Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89239
Title: 整合式代理學習器用於神經架構搜索
An Integrated Proxy Learner for Neural Architecture Search
Authors: 黃奕誠
Yi-Cheng Huang
Advisor: 陳祝嵩
Chu-Song Chen
Keyword: 深度學習,神經網路架構搜索,零代價代理,影像分類,
Deep learning,Neural architecture search,Zero-cost proxy,Image classification,
Publication Year : 2023
Degree: 碩士
Abstract: 零代價代理具備對於未經訓練的神經網路架構評斷優劣之能力以利神經網路搜尋,使其於最近數年備受關注。然而,目前並未有任一零代價代理可在不同架構搜尋空間、任務上皆達到足夠好的表現。為了完善發揮零代價代理的潛力及複數代理之間的互補關係,我們提出了—整合式代理學習器用於神經網路搜尋。我們的方法透過學習架構的自編碼器,將離散的架構搜尋任務轉移至連續、可微分的向量空間。我們利用零代價代理計算方便快速的優勢,另外以極低成本訓練一架構的零代價代理之預測器。在此之上,我們利用此預測器,在架構的潛空間中以「梯度上升法」進行架構搜尋,其效率更勝於傳統的隨機搜尋及演化搜尋法。
我們的方法具有計算代價低廉之優勢,而搜尋得到的架構之表現也十分具競爭力,其中在ImageNet分類任務中取得76.5%的精準度,是目前在DARTS架構搜尋空間中的最佳表現。
Recently, zero-cost proxies for neural architecture search (NAS) have attracted increasing attention and research since they allows us to discover top-performing neural networks through architecture scoring without requiring training a very large network (i.e., supernet) first. Thus, it can save significant computation resources and time to complete the search. However, to our knowledge, no single proxy works the best for different tasks and scenarios. To consolidate the strength of different proxies and to reduce search bias, we propose a novel Integrated Proxy Learner (IPL) to perform a highly efficient and effective gradient-based search over random-based and evolutionary-based methods. We first train an autoencoder for one-hot encoded neural architecture. Then, we append a multi-layer perceptron (MLP) to the encoder and train the MLP to predict different proxies scores simultaneously in multi-task learning paradigm using collected score data from multiple existing zero-cost proxies. At last, we can sample a new architecture by performing gradient ascent-based search with the learned encoder and the MLP scorer. We conduct extensive experiments on the search spaces of NAS-Bench-201, NAS-Bench-101 and DARTS in different datasets, achieving the SOTA performance (76.5% top-1 accuracy) on ImageNet. The results demonstrate the effectiveness of the proposed approach over other state-of-the-art NAS algorithms.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89239
DOI: 10.6342/NTU202303048
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
4.48 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved