Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳祝嵩zh_TW
dc.contributor.advisorChu-Song Chenen
dc.contributor.author黃奕誠zh_TW
dc.contributor.authorYi-Cheng Huangen
dc.date.accessioned2023-09-07T16:09:57Z-
dc.date.available2024-09-01-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] M. S. Abdelfattah, A. Mehrotra, Ł. Dudziak, and N. D. Lane. Zero-cost proxies for lightweight nas. In ICLR, 2021.
[2] Y. Akhauri, J. P. Munoz, N. Jain, and R. Iyer. Evolving zero cost proxies for neural architecture scoring. arXiv preprint arXiv:2209.07413, 2022.
[3] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter optimization framework. In SIGKDD, 2019.
[4] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In NeurIPS, 2011.
[5] T. C. P. Chau, L. Dudziak, M. S. Abdelfattah, R. Lee, H. Kim, and N. D. Lane. Brp-nas: Prediction-based nas using gcns. NeurIPS, 2020.
[6] W. Chen, X. Gong, and Z. Wang. Neural architecture search on imagenet in four gpu hours: A theoretically inspired perspective. In ICLR, 2021.
[7] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian, M. Yu, P. Vajda, and J. E. Gonzalez. Fbnetv3: Joint architecture-recipe search using predictor pretraining. In CVPR, 2021.
[8] X. Dong and Y. Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search. In International Conference on Learning Representations (ICLR), 2020.
[9] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun. Single path one-shot neural architecture search with uniform sampling. In ECCV, 2020.
[10] K. Jing, J. Xu, and P. Li. Graph masked autoencoder enhanced predictor for neural architecture search. In IJCAI, 2022.
[11] T. Kipf and M. Welling. Variational graph auto-encoders. ArXiv, abs/1611.07308, 2016.
[12] A. Krishnakumar, C. White, A. Zela, R. Tu, M. Safari, and F. Hutter. Nas-bench-suite-zero: Accelerating research on zero cost proxies. NeurIPS Datasets and Benchmarks, 2022.
[13] N. Lee, T. Ajanthan, and P. Torr. SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY. In ICLR, 2019.
[14] M. Lin, P. Wang, Z. Sun, H. Chen, X. Sun, Q. Qian, H. Li, and R. Jin. Zen-nas: A zero-shot nas for high-performance image recognition. In ICCV, 2021.
[15] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In ICLR, 2019.
[16] V. Lopes, S. Alirezazadeh, and L. A. Alexandre. Epe-nas: Efficient performance estimation without training for neural architecture search. In ICANN, 2021.
[17] R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, and T.-Y. Liu. Semi-supervised neural architecture search. NeurIPS, 2020.
[18] R. Luo, F. Tian, T. Qin, E.-H. Chen, and T.-Y. Liu. Neural architecture optimization. In Advances in neural information processing systems, 2018.
[19] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural architecture search without training. In ICML, 2021.
[20] X. Ning, C. Tang, W. Li, Z. Zhou, S. Liang, H. Yang, and Y. Wang. Evaluating efficient performance estimators of neural architectures. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, NeurIPS, 2021.
[21] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameters sharing. In ICML, 2018.
[22] M. Ruchte, A. Zela, J. N. Siems, J. Grabocka, and F. Hutter. Naslib: A modular and flexible neural architecture search library. 2020.
[23] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Pruning neural networks without any data by iteratively conserving synaptic flow. In NeurIPS, 2020.
[24] Y. Tang, Y. Wang, Y. Xu, H. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, and C. Xu. A semi-supervised assessor of neural architectures. In CVPR, 2020.
[25] J. Turner, E. J. Crowley, M. O’Boyle, A. Storkey, and G. Gray. Blockswap: Fisher-guided block substitution for network compression on a budget. In ICLR, 2020.
[26] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving gradient flow. In ICLR, 2020.
[27] C. Wei, C. Niu, Y. Tang, and J. Liang. Npenas: Neural predictor guided evolution for neural architecture search. IEEE transactions on neural networks and learning systems, 2020.
[28] C. White, W. Neiswanger, S. Nolen, and Y. Savani. A study on encodings for neural architecture search. NeurIPS, 2020.
[29] C. White, W. Neiswanger, and Y. Savani. Bananas: Bayesian optimization with neural architectures for neural architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.
[30] H. Xiao, Z. Wang, Z. Zhu, J. Zhou, and J. Lu. Shapley-nas: Discovering operation contribution for neural architecture search. In CVPR, 2022.
[31] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In ICLR, 2019.
[32] Y. Xu, L. Xie, X. Zhang, X. Chen, G.J. Qi, Q. Tian, and H. Xiong. Pcdarts: Partial channel connections for memory-efficient architecture search. In ICLR, 2020.
[33] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang. Does unsupervised architecture representation learning help neural architecture search? NeurIPS, 2020.
[34] P. Ye, B. Li, Y. Li, T. Chen, J. Fan, and W. Ouyang. b-darts: Beta-decay regularization for differentiable architecture search. In CVPR, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89239-
dc.description.abstract零代價代理具備對於未經訓練的神經網路架構評斷優劣之能力以利神經網路搜尋,使其於最近數年備受關注。然而,目前並未有任一零代價代理可在不同架構搜尋空間、任務上皆達到足夠好的表現。為了完善發揮零代價代理的潛力及複數代理之間的互補關係,我們提出了—整合式代理學習器用於神經網路搜尋。我們的方法透過學習架構的自編碼器,將離散的架構搜尋任務轉移至連續、可微分的向量空間。我們利用零代價代理計算方便快速的優勢,另外以極低成本訓練一架構的零代價代理之預測器。在此之上,我們利用此預測器,在架構的潛空間中以「梯度上升法」進行架構搜尋,其效率更勝於傳統的隨機搜尋及演化搜尋法。
我們的方法具有計算代價低廉之優勢,而搜尋得到的架構之表現也十分具競爭力,其中在ImageNet分類任務中取得76.5%的精準度,是目前在DARTS架構搜尋空間中的最佳表現。
zh_TW
dc.description.abstractRecently, zero-cost proxies for neural architecture search (NAS) have attracted increasing attention and research since they allows us to discover top-performing neural networks through architecture scoring without requiring training a very large network (i.e., supernet) first. Thus, it can save significant computation resources and time to complete the search. However, to our knowledge, no single proxy works the best for different tasks and scenarios. To consolidate the strength of different proxies and to reduce search bias, we propose a novel Integrated Proxy Learner (IPL) to perform a highly efficient and effective gradient-based search over random-based and evolutionary-based methods. We first train an autoencoder for one-hot encoded neural architecture. Then, we append a multi-layer perceptron (MLP) to the encoder and train the MLP to predict different proxies scores simultaneously in multi-task learning paradigm using collected score data from multiple existing zero-cost proxies. At last, we can sample a new architecture by performing gradient ascent-based search with the learned encoder and the MLP scorer. We conduct extensive experiments on the search spaces of NAS-Bench-201, NAS-Bench-101 and DARTS in different datasets, achieving the SOTA performance (76.5% top-1 accuracy) on ImageNet. The results demonstrate the effectiveness of the proposed approach over other state-of-the-art NAS algorithms.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:09:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T16:09:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 iv
Abstract v
Contents vii
List of Figures x
List of Tables xi
Chapter 1 Introduction 1
1.1 Introduction of NAS . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction of Zero-Cost Proxy . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Related Work 5
2.1 Predictor-Based NAS . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Zero-Cost Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Architecture Embedding . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 3 Methodology 8
3.1 Zero-Cost Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Architecture Autoencoder . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Architecture Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Architecture Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Training Objective of Autoencoder . . . . . . . . . . . . . . . . . . 12
3.3 Proxy Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Gradient Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 4 Experiment 15
4.1 Search Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 NAS-Bench-201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 NAS-Bench-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 DARTS CNN search space . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 Proxy Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Proxy Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2.1 Details of Finding Appropriate Weights to Combine Different Proxy Scores . . . . . . . . . . . . . . . . . . . 18
4.2.3 Gradient Ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Evalutation Results on NAS-Bench-201 . . . . . . . . . . . . . . . . 20
4.4 Evalutation Results on NAS-Bench-101 . . . . . . . . . . . . . . . . 20
4.5 Evalutation Results on DARTS Space . . . . . . . . . . . . . . . . . 22
4.6 Ablation Studies and Discussions . . . . . . . . . . . . . . . . . . . 23
4.6.1 The rank correlation of the predicted proxy scores. . . . . . . . . . 23
4.6.2 Comparing with baseline search method utilizing Proxy-Learner. . . 26
4.6.3 Visualization of NAS-Bench-201’s architecture embedding space. . 27
4.6.4 Training Data Preprocessing According to Proxy Score Distributions of NAS-Bench-201 and DARTS Spaces . . . . . . . . . . . . . . . 28
Chapter 5 Conclusion 34
References 35
-
dc.language.isoen-
dc.subject零代價代理zh_TW
dc.subject深度學習zh_TW
dc.subject神經網路架構搜索zh_TW
dc.subject影像分類zh_TW
dc.subjectNeural architecture searchen
dc.subjectDeep learningen
dc.subjectImage classificationen
dc.subjectZero-cost proxyen
dc.title整合式代理學習器用於神經架構搜索zh_TW
dc.titleAn Integrated Proxy Learner for Neural Architecture Searchen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳駿丞;李宏毅;孫民zh_TW
dc.contributor.oralexamcommitteeJun-Cheng Chen;Hung-Yi Lee;Min Sunen
dc.subject.keyword深度學習,神經網路架構搜索,零代價代理,影像分類,zh_TW
dc.subject.keywordDeep learning,Neural architecture search,Zero-cost proxy,Image classification,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU202303048-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved