Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88393
Title: 向量自迴歸模型的費雪訊息與超調和先驗分布
Fisher Information and Superharmonic Priors for the Vector Autoregression Model
Authors: 吳雋毅
Jiun-Yi Wu
Advisor: 楊鈞澔
Chun-Hao Yang
Keyword: 向量自迴歸模型,無信息先驗分布,超調和先驗分布,信息幾何學,費雪信息,
vector autoregression model,non-informative prior,superharmonic prior,information geometry,Fisher information matrix,
Publication Year : 2023
Degree: 碩士
Abstract: 向量自迴歸模型是一種常用在總體經濟及自然科學上的線性統計模型,本文聚焦在該模型的參數估計問題上。在缺乏對模型參數先驗資訊的情況下,無信息先驗分布是經常被考慮的選項,而傑佛瑞先驗分布是最常使用的分布之一。Komaki(1999)提出了在滿足特定條件下,一種超調和先驗分布將存在並在參數估計上有比傑佛瑞先驗分布更好的表現,而Tanaka(2018)成功的計算出了在一維的自迴歸模型上的超調和先驗分布。本篇論文沿襲了相同的思路,將該理論沿用在向量自迴歸模型上,並嘗試去計算出該模型的超調和先驗分布。本文依序介紹了定義超調和先驗分布所需要的背景知識,包含譜密度、費雪信息及信息幾何學,並給出了在向量自迴歸模型的模型流形上,明確的黎曼流形距離,為進一步的計算奠定了幾何基礎。最後我們提出了在自迴歸模型上,維度對流形距離的影響,並總結了計算該模型的超先驗分布時將遇到的困難及其中幾個可能的解決方法。
The vector autoregressive model (VAR) is a common choice when studying macroeconomics and natural science. In this thesis, we focus on estimating the parameters of the VAR model. When estimating without prior knowledge of the parameters, we often apply a non-informative prior, and Jeffreys prior is one of the most common choices. Komaki(1999) proposed that under certain conditions, a superharmonic prior exists and outperforms the estimation of the Jeffreys prior. Tanaka(2018) successfully derive the superharmonic prior for the autoregressive model. Our research applies this approach to the VAR model and aims to calculate the superharmonic prior for the VAR model. In the following thesis, we first introduce the necessary knowledge to define the superharmonic prior, including spectral density matrix, Fisher information, and information geometry. We compute the explicit form of the Riemannian metric of the VAR model manifold and establish the necessary geometry foundation for further computation. To conclude, we highlight the significant differences between the AR and VAR models, the obstacles when calculating the superharmonic prior, and some possible solutions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88393
DOI: 10.6342/NTU202301697
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf379.85 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved