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摘要

向量自迴歸模型是一種常用在總體經濟及自然科學上的線性統計

模型，本文聚焦在該模型的參數估計問題上。在缺乏對模型參數先驗

資訊的情況下，無信息先驗分布是經常被考慮的選項，而傑佛瑞先驗

分布是最常使用的分布之一。Komaki (1999)提出了在滿足特定條件

下，一種超調和先驗分布將存在並在參數估計上有比傑佛瑞先驗分布

更好的表現，而Tanaka (2018)成功的計算出了在一維的自迴歸模型上

的超調和先驗分布。本篇論文沿襲了相同的思路，將該理論沿用在向

量自迴歸模型上，並嘗試去計算出該模型的超調和先驗分布。本文依

序介紹了定義超調和先驗分布所需要的背景知識，包含譜密度、費雪

信息及信息幾何學，並給出了在向量自迴歸模型的模型流形上，明確

的黎曼流形距離，為進一步的計算奠定了幾何基礎。最後我們提出了

在自迴歸模型上，維度對流形距離的影響，並總結了計算該模型的超

先驗分布時將遇到的困難及其中幾個可能的解決方法。

關鍵字：向量自迴歸模型、無信息先驗分布、超調和先驗分布、信息
幾何學、費雪信息
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Abstract

The vector autoregressive model (VAR) is a common choice when study

ing macroeconomics and natural science. In this thesis, we focus on estimat

ing the parameters of the VARmodel. When estimating without prior knowl

edge of the parameters, we often apply a noninformative prior, and Jeffreys

prior is one of the most common choices. Komaki (1999) proposed that under

certain conditions, a superharmonic prior exists and outperforms the estima

tion of the Jeffreys prior. Tanaka (2018) successfully derive the superhar

monic prior for the autoregressive model. Our research applies this approach

to the VAR model and aims to calculate the superharmonic prior for the VAR

model. In the following thesis, we first introduce the necessary knowledge

to define the superharmonic prior, including spectral density matrix, Fisher

information, and information geometry. We compute the explicit form of the

Riemannian metric of the VAR model manifold and establish the necessary

geometry foundation for further computation. To conclude, we highlight the

significant differences between the AR and VAR models, the obstacles when

calculating the superharmonic prior, and some possible solutions.

Keywords: vector autoregression model, noninformative prior, superhar
monic prior, information geometry, Fisher information matrix
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Chapter 1 Introduction

1.1 Bayesian Estimation for VAR model

Vector autoregression (VAR) is a linear multivariate statistical model to describe the

joint relations between multiple time series. It provides a framework for data descrip

tion, forecast, and decisionmaking. VARs have been applied to different fields, such as

Medicine (Wild et al., 2010), Epidemiology (Langley et al., 2012), Economics (Stock and

Watson, 2001), and Biology (OpgenRhein and Strimmer, 2007), to examine the dynamic

relationships between variables that interact with one another. When applying VARs to

Macroeconomic models, Sims (1980) proposed that a Bayesian approach could have im

proved upon previous frequentist ones in parameter estimation. Also, the number of pa

rameters to be estimated in VARs increases significantly as time lags and dimension in

crease. Therefore, various priors for VARs have been studied and applied to different

fields to overcome these difficulties, such as horseshoe priors (Prüser, 2021), shrinkage

priors (Choi and Mullhaupt, 2015), Minnesotaprior (Kadiyala and Karlsson, 1997) and

globallocal priors (Cross et al., 2020), each with its advantages and disadvantages.

1.2 Spectral Density and Information Geometry

There are two main approaches for the analysis of physical signals: the timedomain

approach and the frequencydomain approach. The timedomain analysis is based on the

joint density of the observations. In contrast, the frequencydomain analysis is based on

the Fourier transform of the joint density, i.e., the spectral density. Under certain assump

1
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tions, the two approaches are equivalent. For example, under the stationarity assumption,

the two approaches are equivalent for the VAR model (Klein, 2000). In this thesis, we

follow the frequencydomain approach.

We adopt an informationtheoretic point of view to perform statistical inference for

spectral densities. More specifically, we consider the set of all spectral densities, which is a

submanifold of the Euclidean space, and equip the submanifold with a Riemannian metric.

This approach is called the Information Geometrical approach and will be described in

more detail in Chapter 2. This approach allows us to derive priors using geometric notions.

Jeffreys prior is one example: the volume measure on the submanifold. Another example

is the superharmonic prior, which is the main focus of this thesis.

1.3 Superharmonic Prior for AR model

When selecting a prior for the VAR model, a noninformative prior is often consid

ered if we only have vague or general information about a parameter. Jeffreys prior is one

of the most common choices for this purpose. Two advantages of Jeffreys prior are (i)

that it is invariant to reparametrization and (ii) it depends only on the model. However,

Komaki (2006) showed that if there exists a positive superharmonic function on the model

manifold of a parametric statistical model for i.i.d. random variables, the corresponding

prior asymptotically dominates the Jeffreys prior when estimating the parameters. Tanaka

and Komaki (2008) continued this idea and calculated the superharmonic prior of the au

toregressive model with dimension two.

The pth order autoregression model, AR(p), is commonly used in univariate time

series analysis. It assumes the data {xt} satisfies

xt = −
p∑

i=1

aixt−i + ϵt

where ϵt are i.i.d. Gaussian white noise with mean 0 and variance σ2. The estimation of

parameters {ai} is well studied from a frequentist point of view. However, the Bayesian

approach for AR models remains challenging. Komaki (2006) has proved that a superhar

2
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monic prior asymptotically dominates the Jefferys prior under KullbackLeibler (KL) loss.

Other studies (Brown, 1971) on the prediction of random Gaussian vectors also showed

that superharmonic prior is a sufficient condition for the resulting estimator to be mini

max. Last but not least, when studying a higherdimensional time series, the large number

of parameters is one of the obstacles ahead. We often need some sparse or shrinkage prop

erties from the prior to reduce the number of significant covariates and better reveal the

relations between each variable. In Tanaka’s work, a superharmonic prior is biased toward

parameters close to zero, so it is an ideal choice when analyzing an AR or VAR model.

Note that there are many noninformative priors besides Jeffreys prior and superhar

monic priors, for example, the reference prior proposed by Berger and Bernardo (1992)

and the probability matching priors proposed by Welch and Peers (1963). For a more

detailed review of various noninformative priors, see Ghosh (2011) and the references

therein. Our work follows Tanaka and Komaki (2008)’s approach toward the superhar

monic priors of AR models and extends it to VARs.

3
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Chapter 2 Theoretical Preliminary

In Section 2.1, we recall the basics of VARmodels. We also introduce the lag operator

and define the stationary condition for the VAR model. Throughout the rest of this thesis,

we assume that all the models are stationary. In Section 2.2, we follow the frequency ap

proach and introduce the spectral density of the general time series. The main goal then is

to estimate the spectral density of the model, and we consider the KullbackLeibler diver

gence when evaluating the performance. In Section 2.3, we review the general concept of

information geometry and define the model manifold of the VAR model. In Section 2.4,

we introduce the superharmonic function on a model manifold and the resulting superhar

monic prior. Superharmonic priors have a shrinkage effect that can improve estimation

or prediction. For example, Komaki (2006) showed that for Bayesian prediction, super

harmonic priors asymptotically outperform the Jeffreys prior. Lastly, in Section 2.5, we

review some results regarding the Fisher informationmatrix of the spectral density of VAR

models.

2.1 Vector Autoregression Model of Order p

The vector autoregressionmodel of order p is used to describe the discretendimensional

data {yt} and its dependence structure,

yt = −C1yt−1 − C2yt−2 − . . .− Cpyt−p + ϵt, t ∈ N (2.1)

where p is the number of lags, {Ci : i = 1, . . . , p} are n× n real matrix parameters to be

estimated. The error terms ϵt are independent and follow a multivariate Gaussian distri

bution with mean 0 and a positive semidefinite covariance matrix Λ. We will refer to the

5
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above model with p lags as a VAR(p) model for the rest of the article. For n = 1, we will

refer to the model as an AR(p) model.

A common approach when analyzing regression models is to introduce the lag oper

ator or back shift operator L, which operates on an element of the time series to produce

the previous element, i.e.Lyt = yt−1 for all elements of the model. Then, a VAR(p) model

can be rewritten as

yt + C1Lyt + C2L
2yt + . . .+ CpL

pyt = A(L)yt = ϵt , t ∈ N

where

A(z) = In + C1z + C2z
2 + . . .+ Cpz

p

is the lag polynomial that follows similar rules as a regular polynomial. The use of this

polynomial will be shown later in the thesis.

For the models in this thesis, we further assume that the model is stationary. A

stochastic process is stationary if the unconditional joint probability distribution is in

variant when time shifts. In such a case, the data will not have a particular trend and

remain stable over the long term. For a VAR(p) model to be stationary, the zeros of the

corresponding lag polynomial need to be outside the unit circle. That is

∀ |z| ≤ 1, det{A(z)} ̸= 0.

An important implication of this assumption is that A(z)−1 exists, and can be written as a

power series of z in this case.

A VAR(p) model can also be written as a VAR(1) model by stacking the vectors of p

6
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consecutive data, that is

yt

yt−1

...

...

yt−p+1


= −



C1 C2 · · · Cp−1 Cp

−In 0n · · · 0n 0n

0n −In · · · 0n 0n
... ... · · · ... ...

0n 0n · · · −In 0n





yt−1

yt−2

...

...

yt−p


+



εt

0⃗
...
...

0⃗



⇐⇒ Yt = −C Yt−1 + ϵ̂t, t ∈ N

where Yt = vec{yt, yt−1, . . . , yt−p+1}, and ϵ̂t = vec{ϵt, 0⃗, . . . , 0⃗}. In this expression, the

model is stationary if the eigenvalues of C are all inside the unit circle.

2.2 Spectral Density Matrix of Time Series

When analyzing a time series, the probability density function (pdf) of the joint dis

tribution consists of infinitely many inputs. So it’s useful to consider the spectral density

matrix of the series rather than its pdf. The spectral density matrix of a stationary discrete

time series is defined as

S(ω) =
1

2π

∞∑
k=−∞

rXX(k)e
−iωk, ω ∈ [−π, π] (2.2)

where rXX(k) = E [X(t)X(t− k)] is the autocorrelation function of the time seriesX(t).

The function can also be interpreted as the Fourier transform of the autocorrelation func

tion. Through this definition, the spectral density matrix S(ω | θ) of the VAR model (2.1)

is

S(ω | θ) =
(

1

2π

)
A−1

(
eiω
)
ΛA−T (e−iω) , ω ∈ [−π, π] (2.3)

where A(z) = In + C1z + C2z
2 + . . . + Cpz

p, and θ⊤ = vec (C1, C2, · · · , Cp) is a

n2p× 1 vector representing all the parameters of the model (Den Haan and Levin, 1998).

It is known that a stationary VAR model has a onetoone correspondence to its spectral

7
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density matrix (Whittle, 1963), so the estimation of a VAR model can be achieved by

estimating its spectral density.

The performance of the estimate Ŝ(ω) can be evaluated by the KullbackLeibler di

vergence,

D
(
S (ω | θ) ||Ŝ(ω)

)
:=

∫ π

−π

dω
4π

{
S (ω | θ)
Ŝ(ω)

− 1− log

(
S (ω | θ)
Ŝ(ω)

)}
(2.4)

where S(ω | θ) is the true spectral density matrix. With a given prior π(θ), the average

risk is then

EΘEX [D(S(ω | θ)∥Ŝ(ω))]

:=

∫
dθπ(θ)

∫
pn (x1, . . . , xn | θ)D(S(ω | θ)∥Ŝ(ω))dx1 · · · dxn.

To minimize the average risk under the given prior π(θ), the Bayesian spectral density is

then Sπ(ω) :=
∫
S(ω | θ)π(θ | x)dθ. Therefore, our main objective is to find a suitable

prior for the VAR(p) model that outperforms the estimation of the usual noninformative

prior, i.e. the Jeffreys prior.

2.3 Information Geometry and Model Manifold

Information geometry is a method of studying statistical models with modern ge

ometry. The key observation is that the Fisher information matrix can be regarded as a

Riemannian metric for a parametric family of statistical models. The modern theory of

information geometry is formalized by Shun’ichi Amari. We will briefly review the basic

construction of a statistical manifold and we refer the readers to Amari (2016) for more

details and examples.

Let M be a family of statistical models indexed by the parameter set Θ ⊆ Rd, i.e.

M = {fθ | θ ∈ Θ}. The simplest example is the family of Gaussian distributions M =

{N (µ, σ2) | µ ∈ R, σ2 > 0}. For P ∈ M, we write θP as the parameter corresponding

to P . In other words, θP can be viewed as the coordinates of P in M. On such a family,

we can define a divergence, which measures the dissimilarity between two models.

8
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Definition 2.3.1 (Amari (2016)). A function D : M×M → R is called a divergence if

it satisfies

(i) D(P∥Q) ≥ 0 for all P,Q ∈ M,

(ii) D(P∥Q) = 0 if and only if P = Q, and

(iii) When P andQ are sufficiently close, by denoting their coordinates by θP and θQ =

θP + dθ, the Taylor expansion of D is written as

D(P∥Q) =
1

2

∑
gij(θP )dθidθj +O(|dθ|3),

and matrix G = (gij) is positivedefinite, depending on θP .

Note that divergence or its square root is not a distance since it need not be sym

metric or satisfy the triangle inequality. The most common example of divergence is the

KullbackLeibler divergence (KLdivergence)

DKL(p(x)∥q(x)) =
∫

p(x) log
p(x)

q(x)
dx = EP

[
log

p(X)

q(X)

]
where p(x) and q(x) are two probability density functions. Given a familyM of models

and a divergence D(·∥·), various geometric structures can be induced onM.

In this thesis, we mainly focus on the Riemannian metric of the model manifold. To

find and define a suitable metric for the model manifold, we consider two distributions

with different parameters, p(x, ξ) and p(x, ξ′). The KLdivergence between these two

distributions is then

D(p(x, ξ)∥p(x, ξ + dξ)) =
1

2
Eξ [∂i log p(x, ξ)∂j log p(x, ξ)] dξidξj

=
1

2
Fijdξ

idξj.

Here, F is the Fisher information matrix of the VAR(p) model. With this expression, it’s

natural to consider the Fisher information matrix to be the Riemannian metric of the model

manifold.

9
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We know that any stationary VAR(p) model corresponds one to one to its spectral

density matrix S(ω|θ). So we substitute the pdf of the VAR(p) model with its spectral

densitymatrix. Then, the spectral densitymatrix of the parametric family forms amanifold

M := {S(ω | θ) : θ ∈ Θ}

This manifold is referred to as the model manifold of VAR(p). As mentioned earlier, we

naturally choose the Fisher information matrix to be the Riemannian metric on the model

manifold.

With the concept of model manifold, any prior of the model is essentially a proba

bility distribution function of the parameters θ⊤ = vec (C1, C2, · · · , Cp), which is a pos

itive function defined on the model manifold. For example, the Jeffreys prior, πJ(θ) ∝√
| det(F (θ))|, corresponds to the volume element of the manifold. With the above back

ground knowledge, we are prepared to define the superharmonic prior of the VAR(p)

model.

2.4 Superharmonic Prior

In the Bayesian framework, if the prior knowledge is vague, it is common to choose

a noninformative prior. Jeffreys prior is one of the most common choices in most sce

narios since it is invariant under reparametrization. However, Komaki (2006) gave suffi

cient conditions for the existence of shrinkage predictive distributions that asymptotically

dominate the Jeffreys predictive distribution. More specifically, if we can obtain a posi

tive superharmonic function on the model manifold, we can then define the corresponding

superharmonic prior, which outperforms the Jeffreys prior under the KullbackLeibler di

vergence (Komaki, 2006).

A superharmonic prior of a model is defined through the respective model manifold.

For a model manifold M := {S(ω | θ) | θ ∈ Θ} with a Riemannian metric F (θ), the

10
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LaplaceBeltrami operator on the model manifold is,

∆ϕ :=
1√
F

∂

∂θi

(√
FF ij ∂

∂θj
ϕ

)
(2.5)

where ϕ is any scalar function defined on the manifold, and F ij is the (i, j) entry of F−1.

Note that we adopt Einstein’s summation convention in the above equation. With the

LaplaceBeltrami operator, any scalar function ϕ defined on the model manifold is called

a superharmonic function if∆ϕ ≤ 0 for all θ. For any given positive superharmonic func

tion ϕ, the corresponding superharmonic prior can then be defined as πH(θ) := πJ(θ)ϕ(θ),

where πJ(θ) ∝
√
| det(F (θ))| is the Jeffreys prior of the VAR model.

With this definition, we then examine the existence of the superharmonic function.

Komaki (2006) proved that for a complete simply connected model manifold endowed

with the Fisher metric, superharmonic functions exist if the model manifold has strictly

negative curvature (d = 2) or has negative curvature (d ≥ 3). Here, the curvature is

considered negative if the sectional curvature is negative for all tangent planes at any point.

This theorem provides us with a sufficient condition for the existence of superharmonic

functions.

It is natural to apply the above sufficient condition to verify whether a superharmonic

function exists on VAR(p) models. However, Tanaka (2003) showed that the sectional

curvature of the autoregressive model manifold (lag ≥ 3) is strictly positive for some

planes and at some point. Then, the above sufficient condition could not be applied to

the autoregressive model. Since the autoregressive model is a submodel of the VAR(p)

model, the sectional curvature of the VAR(p) model manifold is also unlikely to satisfy

the sufficient condition. The existence of superharmonic functions will have to rely on

other conditions or through our construction.

Tanaka (2018) concluded an allaround result of the autoregressive model and one

of the superharmonic prior of the model. In Tanaka (2018), the Fisher information metric

and the model manifold were established. Also, one of the superharmonic functions of the

autoregressive model is obtained through computation. The result is significant but hard to

be replicated and applied to the VAR(p) model. However, the result for the autoregressive

11
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model gives a hint for predicting and computing the case of the VAR(p) model.

2.5 The Fisher Information Matrix of VAR(p)

To obtain the Riemannian metric of the model manifold, we need to compute the

Fisher information matrix of the VAR(p) model. Generally, the Fisher information matrix

F (θ) is defined as

[F (θ)]i,j = E
[(

∂

∂θi
log f(X; θ)

)(
∂

∂θj
log f(X; θ)

)
| θ
]

where f(x; θ) is the probability density function. Here, we illustrate two different ap

proaches to calculating the Fisher information matrix of the VAR(p) model.

Using the lag polynomial, we can rewrite the model as

ϵt = A(L)yt , t ∈ N .

Here, ϵt are identically independent Gaussian distributions with zero mean and covariance

matrix Λ. The corresponding Fisher information matrix of the Gaussian distribution is

given by

F (θ) = E
{
∂ε∗

∂θT
Λ−1 ∂ε

∂θT

}
. (2.6)

With this expression, the Fisher information of the VAR(p) model is

F (θ) =
1

2πi

∮
|z|=1

(
∂ vecA (z−1)

∂θT

)T (
A−1

(
z−1
)
ΛA−T(z)⊗ Λ−1

)(∂ vecA(z)
∂θT

)
dz
z
.

(2.7)

Since a stationary VAR(p) model corresponds onetoone to its spectral density ma

trix, another approach to calculating the Fisher information matrix is through its spectral

density matrix. The Fisher information matrix of a spectral density matrix is given by

Fij(θ) =
1

4π

∫ π

−π

Tr
(
∂S(ω | θ)

∂θi
S−1(ω | θ)∂S(ω | θ)

∂θj
S−1(ω | θ)

)
dω.

12
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This result can also be rewritten as

F (θ) =
1

4πi

∮
|z|=1

(
∂ vecS (z−1)

∂θT

)T (
ST(z)⊗ S(z)

)−1
(
∂ vecS(z)

∂θT

)
dz
z
. (2.8)

Klein (2000) has shown that the two methods above agree on the VARMA model, which

consists of the VAR(p) model. We will use the two formulas for different cases in this

thesis.
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Chapter 3 Main Results

In Section 3.1, we give a closedform expression for the Fisher information matrix

for the VAR(1) model. This result is not only a particular case but a helpful result, because

all the autoregression models, including AR(p) and VAR(p), can be reduced to a VAR(1)

model. The closedform expression is also crucial for calculating the LaplaceBeltrami

operator on the model manifold. Without the closedform expression, the determinant

and inverse of the Fisher information matrix in the operator can not be obtained.

In Section 3.2, we show how the Fisher information matrix of the VAR(p) model can

be derived from the case of VAR(1). To further simplify the result, Komaki (1999) applied

a change of coordinate when studying the AR(p) model. In Section 3.3, we verify that the

AR(p) model can be derived from our result and our calculation matches with the previous

work from Komaki (1999).

In Section 3.4, we consider the covariance matrix of the white noise, Λ, as one of

the unknown parameters to be estimated. Then, the model manifold would consist of

additional n2 parameters. We compare the AR(p) and VAR(p) models and verify that the

Fisher information matrix in both cases follows the same formula.

Finally, in Section 3.5, we give an example of a VAR(1) model with n = 2 and

calculate the results under different assumptions. These examples show that the multi

dimensional casemodel is fundamentallymore complex and different from the onedimensional

case.
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3.1 Fisher Matrix for VAR(1) model

To begin with, we first calculate the Fisher information matrix of the VAR(1) model,

yt = −Cyt−1 + ϵt, t ∈ N.

We follow equation 2.7 which is

F (θ) =
1

2πi

∮
|z|=1

(
∂ vecA (z−1)

∂θT

)T (
A−1

(
z−1
)
ΛA−T(z)⊗ Λ−1

)(∂ vecA(z)
∂θT

)
dz
z
.

Here, A(z) = In + Cz is the lag polynomial of the VAR(1) model. Since we assume

the VAR models are stationary, the roots of det(A(z)) = det(In + Cz) = 0 are outside

the unit disc. So the elements of A−1(z) can be written as power series in z for |z| ≤ 1.

On the other hand, the roots of detA(z−1) = 0 are inside the unit circle, which suggests

that A−1(z−1) exists and can be written as power series in z for |z| ≥ 1. Therefore, both

A−1(z) and A−1(z−1) can be written as a power series in z on the unit circle |z| = 1

(Higham, 2008). So on the unit circle |z| = 1, we have the two expansions

A−1(z) = (In + Cz)−1 =
∞∑
k=0

(
−Cz−1

)k
A−1(z−1) = (In + Cz−1)−1 =

∞∑
k=0

(−Cz)k .

Now we can start simplifying the formula. By arranging the parameters as θ⊤ =

vec (C), the partial derivatives become apparent, since

vecA (z) = vec In+ vec(C)z,
∂ vecA (z)

∂θT
= Inz

and

vecA
(
z−1
)
= vec In+ vec(C)z−1,

∂ vecA (z−1)

∂θT
= Inz

−1.
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Therefore,

F (θ) =
1

2πi

∮
|z|=1

[A−1
(
z−1
)
ΛA−T(z)]⊗ Λ−1dz

z

=
1

2πi

∮
|z|=1

(
In + Cz−1

)−1
Λ
(
In + CTz

)−1 dz

z
⊗ Λ−1

=
1

2πi

∮
|z|=1

∞∑
i=0

(
−Cz−1

)i
Λ

∞∑
j=0

(
−CTz

)j dz
z

⊗ Λ−1

=
∞∑
k=0

(−C)k Λ
(
−CT)k ⊗ Λ−1

= f(θ)⊗ Λ−1.

Here, f(θ) =
∑∞

k=0 (−C)k Λ (−CT)
k
=
∑∞

k=0 (C)k Λ (CT)
k.

Note that,

C(
N∑
k=0

(C)k Λ
(
CT)k)CT −

N∑
k=0

(C)k Λ
(
CT)k = CN+1Λ(CT)N+1 − Λ.

The stationarity of the model ensures that limN→∞ CN = 0n. So f(θ) satisfies the fol

lowing equation

Cf(θ)CT − f(θ) + Λ = 0

which is the Lyapunov equation (Hammarling, 1982). The solution can be expressed in

matrix form via the vectorization operator

(In2 − C ⊗ C) vec(f(θ)) = vec(Λ)

⇒ vec(f(θ)) = (In2 − C ⊗ C)−1 vec(Λ). (3.1)

To omit the vectorization operator, we can apply the inverse vectorize operator. For a

n2 × 1 vector x⃗,

vec−1(x⃗) =
(
(vec In)T ⊗ In

)
(In ⊗ x⃗) .

With the above calculations and expression, we have computed the explicit form of the

Fisher information matrix of the VAR(1) model.
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Theorem 3.1.1. For a stationary VAR(1) model with C as its parameter

yt = −Cyt−1 + ϵt, t ∈ N,

the corresponding Fisher information matrix is

F (θ) = f(θ)⊗ Λ−1

=
{[

(vec In)T ⊗ In

] [
In ⊗ ((In2 − C⊗ C)−1 vec(Λ))

]}
⊗ Λ−1.

3.2 VAR(p) model as a VAR(1) model

To tackle the Fisher information matrix of VAR(p) models, we rewrite the recursive

equation yt = −C1yt−1 − C2yt−2 − . . .− Cpyt−p + ϵt as

yt

yt−1

...

...

yt−p+1


= −



C1 C2 · · · Cp−1 Cp

−In 0 0 0

0 −In 0
...

... ... ... ...

0 0 −In 0





yt−1

yt−2

...

...

yt−p


+



εt

0
...
...

0


. (3.2)

Then, it’s obvious that this is a VAR(1) model

Yt = −C Yt−1 + ϵ̂t, with

ϵ̂t = ep ⊗ ϵt, ep =


1
...

0

 .

Here, Yt is a np × 1 vector, and C is a np × np matrix with only n2p parameters to be

estimated.

However, in this VAR(1) model, the covariance matrix of ϵ̂t is of the form (epe
T
p)⊗Λ

which is not of full rank. Essentially, the model (3.2) is a degenerate case of the general

VAR(1) model because only the first np rows of the data contain random variables. As a
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result, the spectral density matrix

S(ω) =

(
1

2π

)
A−1

(
eiω
)
((epe

T
p)⊗ Λ)A−T (e−iω) , ω ∈ [−π, π]

is not Invertible. To tackle this problem, we need to consider the pseudo inverse of the

spectral density matrix. That is to consider the pseudo inverse of (epeTp)⊗Λ to be (epeTp)⊗

Λ−1.

Now, we can follow the same procedure as the VAR(1) model to obtain the result for

VAR(p) models. The parameters will be arrange as θT = vec (C1, C2, · · · , Cp), A(z) =

Inp + Cz, with

∂ vecA(z)
∂θT

= zInp ⊗ ep ⊗ In,

(
∂ vecA (z−1)

∂θT

)T

= z−1Inp ⊗ eTp ⊗ In.

So the Fisher information matrix of the VAR(p) model is as follows

F (θ) =
1

2πi

∮
|z|=1.

(
Inp ⊗ eTp ⊗ In

){ [(
Inp + Cz−1

)−1 (
(epe

T
p)⊗ Λ

) (
Inp + CTz

)−1
]

⊗
[
(epe

T
p)⊗ Λ−1

]}
(Inp ⊗ ep ⊗ In)

dz

z

=
(
Inp ⊗ eTp ⊗ In

) 1

2πi

∮
|z|=1.

{[(
Inp + Cz−1

)−1 (
(epe

T
p)⊗ Λ

) (
Inp + CTz

)−1
]

⊗
[
(epe

T
p)⊗ Λ

]}dz

z
(Inp ⊗ ep ⊗ In)

=
(
Inp ⊗ eTp ⊗ In

) [
g(θ)⊗ (epe

T
p ⊗ Λ−1)

]
(Inp ⊗ ep ⊗ In) ,

where

g(θ) =
1

2πi

∮
|z|=1.

(
Inp + Cz−1

)−1 (
(epe

T
p)⊗ Λ

) (
Inp + CTz

)−1 dz

z

=
1

2πi

∮
|z|=1

∞∑
i=0

(
−Cz−1

)i (
(epe

T
p)⊗ Λ

) ∞∑
j=0

(
−CTz

)j dz
z

=
∞∑
k=0

(−C)k
(
(epe

T
p)⊗ Λ

) (
−CT)k .
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Similar to Section 3.1, g(θ) satisfies the Lyapunov equation

Cg(θ)CT − g(θ) + (epe
T
p)⊗ Λ = 0

⇒ vec(g(θ)) = (In2p2 − C ⊗ C)−1 vec((epeTp)⊗ Λ))

⇒g(θ) =
[
(vec Inp)T ⊗ Inp

] [
Inp ⊗

(
In2p2 − C ⊗ C)−1 vec

(
(epe

T
p)⊗ Λ

)]
Plug in g(θ) into the previous equation, and we have the Fisher information matrix

of the VAR(p) model.

Theorem 3.2.1. For a stationary VAR(p) model with C1 . . . Cp as its parameter

yt = −C1yt−1 − C2yt−2 − . . .− Cpyt−p + ϵt, t ∈ N,

the corresponding Fisher information matrix is

F (θ) = f(θ)⊗ Λ−1

vec f(θ) = (In2p2 − C⊗ C)−1 vec((epeTp)⊗ Λ)

where

C =



C1 C2 · · · Cp−1 Cp

−In 0 0 0

0 −In 0
...

... ... ... ...

0 0 −In 0


.

3.3 Relation with AR(p) Model under Change of Coordi
nate

The main obstacle ahead is that when determining the superharmonicity of a function

ϕ, we need to apply the LaplaceBeltrami operator (2.5), and the computation becomes

significantly complicated. When computing the Fisher information matrix of the autore

gressive model, Komaki (1999) presented an approach to apply a change of coordinate on
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the AR(p) parameters, and the results were very promising.

An AR(p) model has exactly p parameters to be estimated and is of the form

yt = −a1yt−1 − a2yt−2 − . . .− apyt−p + ϵt, t ∈ N.

Komaki (1999) considered the alternative coordinate Z = (z1, z2, · · · zp)⊤, which are the

complex roots of the characteristic polynomial

H(z) = zpA(z−1)

= zp + a1z
p−1 + a2z

p−2 + . . .+ ap.

Then, the Fisher information matrix of the AR(p) model is of the form

F (θ)ij =
1

1− zizj
. (3.3)

With this expression, a superharmonic function of the AR(p) model can be obtained more

conveniently. Tanaka (2018) successfully computed the superharmonic function of the

general AR(p) model. From our perspective, an AR(p) model can also be rewritten as a

VAR(1) model, so we apply our result with the change of coordinate to verify that our

approach is indeed correct,

The autoregression model in this case is

yt

yt−1

...

...

yt−p+1


= −



a1 a2 · · · ap−1 ap

−1 0 0 0

0 −1 0
...

... ... ... ...

0 0 −1 0





yt−1

yt−2

...

...

yt−p


+



εt

0
...
...

0


.

21

http://dx.doi.org/10.6342/NTU202301697


doi:10.6342/NTU202301697

The parameters A = (a1, a2, · · · ap)T form a companion matrix

C =



a1 a2 · · · ap−1 ap

−1 0 0 0

0 −1 0
...

... ... ... ...

0 0 −1 0


.

Applying our result of the VAR(p) model (3.2.1), the corresponding Fisher information

matrix in vectorized form is

vecF (θ) = (Ip2 − C ⊗ C)−1 vec (ep)

⇒ F (θ) =
(
(vec Ip)T ⊗ Ip

) (
Ip ⊗

[
(Ip2 − C ⊗ C)−1 vec (ep)

])
.

Note that if we apply the eigenvalue decomposition on C, the eigenvalues are exactly the

roots of the characteristic polynomial (Chen and Louck, 1996), i.e

C =



a1 a2 · · · ap−1 ap

−1 0 · · · 0 0

0 −1 · · · ... 0
... ... · · · ... ...

0 0 · · · −1 0


= QDQ−1, D = diag (z1, z2, · · · , zp) .

Since the Riemannian metric is a local property on the tangent plane, we can use the

Jacobian matrix ∂A
∂Z

to obtain the Riemannian metric after the change of coordinate.

Here, let F̃zizj denotes the (i, j) entry of the Riemannian metric under the Z coordi

nate, and Fakal denotes the (k, l) entry of the Riemannian metric under the A coordinate.

Then, the two metric satisfies the equation

F̃zizj =

p∑
k=1

p∑
l=1

∂ak
∂zi

∂al
∂zj

Fakal .
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Consequently,

F̃ =

(
∂A

∂Z

)T

F

(
∂A

∂Z

)
, vec(F̃ ) =

((
∂A

∂Z

)T

⊗
(
∂A

∂Z

)T
)
vec(F ).

Using MATLAB, we verify our result indeed coincides with Komaki’s result (3.3). How

ever, direct proof of equality is still required. Only with more understanding of the choice

of the change of variable can we apply it to the VAR(p) model.

3.4 VAR(p) Model with Unknown Noise Covariance

In Section 3.1 and Section 3.2, the Gaussian white noise covariance Λ is consid

ered a known constant. However, this assumption is often impractical in most situa

tions. For most scenarios, Λ is one of the unknown parameters to be estimated. In this

section, we will view Λ as one of the unknown parameters to be estimated. As a re

sult, the model manifold will now consist of a total of n2(p + 1) coordinates. Namely

θT = vec (Λ, C1, C2, · · · , Cp). Since Λ is a real symmetric matrix. it actually only con

tains n(n+ 1)/2 free variables. However, we will still consider the model manifold with

n2(p+ 1) parameters with n(n− 1)/2 coordinates being extra copies.

The spectral density of the model with unknown Λ is

S(ω) =

(
1

2π

)
A−1

(
eiω
)
ΛA−T (e−iω

)
, ω ∈ [−π, π].

To calculate the Fisher information matrix, we follow the formula (2.8)

F (θ) =
1

4πi

∮
|z|=1

(
∂ vecS (z−1)

∂θT

)T (
ST(z)⊗ S(z)

)−1
(
∂ vecS(z)

∂θT

)
dz

z
.

We first calculate the differential of the spectral density by following the differential rule
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dA−1 = −A−1( dA)A−1, and note that dΛ ̸= 0 in this context. Then,

S(z) =

(
1

2π

)
A−1(z)ΛA−T (z−1

)
2π dS(z) =− A−1(z)[ dA(z)]A−1(z)ΛA−T (z−1

)
+ A−1(z) dΛA−T (z−1

)
− A−1(z)ΛA−T (z−1

)
[ dAT (z−1

)
]A−T (z−1

)
.

Following the vectorization rule vec(ABC) = (CT ⊗ A) vec(B), we obtain

(2π)
∂ vecS(z)

∂θT
=−

[(
A−1

(
z−1
)
ΛA−T(z)

)
⊗ A−1(z)

] ∂ vecA(z)
∂θT

+
[
A−1

(
z−1
)
⊗ A−1(z)

] ∂ vecΛ
∂θT

−
[
A−1

(
z−1
)
⊗
(
A−1 (z) ΛA−T(z−1)

)] ∂ vecAT (z−1)

∂θT

= 2π(P (z) +Q(z) +R(z)),

where

P (z) = − 1

2π

[(
A−1

(
z−1
)
ΛA−T(z)

)
⊗ A−1(z)

] ∂ vecA(z)
∂θT

Q(z) =
1

2π

[
A−1

(
z−1
)
⊗ A−1(z)

] ∂ vecΛ
∂θT

R(z) = − 1

2π

[
A−1

(
z−1
)
⊗
(
A−1 (z) ΛA−T(z−1

)] ∂ vecAT (z−1)

∂θT
.

The Fisher information matrix FΛ,C(θ) with unknown Λ now consists of 4 parts, i.e.

FΛ,C(θ) =
1

4πi

∮
|z|=1

[
P
(
z−1
)
+Q

(
z−1
)
+R

(
z−1
)]T (

ST(z)⊗ S(z)
)−1

[P (z) +Q(z) +R(z)]
dz

z

=
1

4πi

∮
|z|=1

[
P
(
z−1
)
+R

(
z−1
)]T (

ST(z)⊗ S(z)
)−1

[P (z) +R(z)]
dz

z

+
1

4πi

∮
|z|=1

Q
(
z−1
)T (

ST(z)⊗ S(z)
)−1

Q(z)
dz

z

+
1

4πi

∮
|z|=1

[
P
(
z−1
)
+R

(
z−1
)]T (

ST(z)⊗ S(z)
)−1

Q(z)
dz

z

+
1

4πi

∮
|z|=1

Q
(
z−1
)T (

ST(z)⊗ S(z)
)−1

[P (z) +R(z)]
dz

z
.
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The first line of the equation corresponds to the result in Section 3.2 where Λ is

considered a known constant. The second line can be further simplified as

1

4πi

∮
|z|=1

Q
(
z−1
)T (

ST(z)⊗ S(z)
)−1

Q(z)
dz

z

=
1

4πi

∮
|z|=1

(
∂ vecΛ
∂θT

)T [
A−T(z)⊗ A−T (z−1

)] [(
A−1

(
z−1
)
ΛA−T(z)

)
⊗
(
A−1(z)ΛA−T (z−1

))]−1

[
A−1(z−1)⊗ A−1(z)

](∂ vecΛ
∂θT

)
dz

z

=
1

4πi

∮
|z|=1

(
∂ vecΛ
∂θT

)T (
Λ−1 ⊗ Λ−1

)(∂ vecΛ
∂θT

)
dz

z

=
1

4πi

∮
|z|=1

(ep ⊗ In)
(
Λ−1 ⊗ Λ−1

) (
eTp ⊗ In

) dz
z

=
1

2

 Λ−1 ⊗ Λ−1 On2×n2p

On2p×n2 On2p×n2p

 .

For the third and fourth lines of the equation, we briefly demonstrate that both of

them are equal to zero. The first part of line three can be simplified as

1

4πi

∮
|z|=1

P
(
z−1
)⊤ [

S⊤(z)⊗ S(z)
]−1

Q(z)
dz

z

=
1

4πi

∮
|z|=1

(
∂ vecA (z−1)

∂θ⊤

)⊤ (
A−1

(
z−1
)
⊗ Λ−1

) ∂ vecΛ
∂θ⊤

dz

z

=
1

4πi

∮
|z|=1

z−1
(
Inp ⊗ e⊤p ⊗ In

) (
A−1

(
z−1
)
⊗ Λ−1

) (
e⊤p ⊗ In

) dz
z

=
(
Inp ⊗ e⊤p ⊗ In

) [( 1

4πi

∮
|z|=1

z−1A−1
(
z−1
) dz
z

)
⊗ Λ−1

] (
e⊤p ⊗ In

)
.

Within the equation, we substitute z with 1
w
. As a result,

1

4πi

∮
|z|=1

z−1A−1
(
z−1
) dz
z

=
−1

4πi

∮
|w|=1

wA−1(w)w
−dw

w2
=

1

4πi

∮
|w|=1

A−1(w)dw = 0.
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The other parts of the third and fourth lines follow similar computations. Combining

the result of the first and second lines, the final result is

FΛ,C(θ) =

 1
2
Λ−1 ⊗ Λ−1 On2×n2p

On2p×n2 FC(θ)

 =

 1
2
Λ−1 ⊗ Λ−1 On2×n2p

On2p×n2 f(θ)⊗ Λ−1


=

 1
2
Λ−1 On×np

Onp×n f(θ)

⊗ Λ−1

Here, FΛ,C(θ) denotes the Fisher information matrix with unknown Λ, and FC(θ) denotes

the Fisher information matrix with known Λ in Section 3.2.

By Komaki (1999), the Fisher information matrix g(θ) of an autoregressive model

(AR) with unknown variance σ2 is

gIJ =


g00 · · · g0i · · ·
... · · · . . . . . .

gi0
... gij

...
... ... · · · ...

 , with


g00 =

1
2σ4

g0i = gi0 = 0

gij =
1

1−zizj

.

Here, g00 denotes the Fisher information within the parameter σ2, and gij is the Fisher

information matrix within the parameters zi, which is a change of coordinate from the

parameters ai. Since the AR model is the onedimensional case of the VAR(p) model, the

similarity of the Information matrix is apparent. In both the AR and VAR cases, the Fisher

information within the covariance Λ are both of the form 1
2
Λ−1 ⊗ Λ−1. In addition, the

Fisher information between the white noise covariance Λ and the regressive parameters

Ci are all zero. This suggests that the two sets of parameters are information orthogonal

parameters, which suggests that their maximal likelihood estimators are asymptotically

uncorrelated.

However, the Fisher information matrix within the lag parameters is fundamentally

different. In the AR(p) model, the information matrix is independent of σ2, so when con

sidering the superharmonic functions, we only need to consider a function with the lag

parameters as the input. In contrast, the information matrix in the VAR(p) model consists

of parameters from bothCi andΛ. So the corresponding superharmonic functionmust take
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both Λ and Ci as inputs. In Section 3.5, we will provide some examples to demonstrate

the difference between the AR(p) and VAR(p) models.

3.5 Example: VAR(1) Model with Dimension Two

To demonstrate our results, we consider the simplest case: VAR(1) with n = 2 yt,1

yt,2

 =

 C11 C12

C21 C22

 yt−1,1

yt−1,2

+

 εt,1

εt,2

 , ε ∼ N (0,Λ).

Since the Fisher informationmatrix ofΛ remains the same in all cases, it will be considered

a known parameter for the following examples.

The simplest case to consider is whenC andΛ are diagonal matrices. Then the model

reduces to two independent AR(1) models, i.e.

yt,1 = C11yt−1,1 + εt,1

yt,2 = C22yt−1,2 + εt,2.

The Fisher informationmatrix is simplyF (θ) =

 1
1−C11

2 0

0 1
1−C22

2

. The superharmonic
function, in this case, is

ϕ = (1− C11)
1
2 (1− C22)

1
2 , with ∆ϕ = −2ϕ.

This case shows that for a VARmodel that reduces to an ARmodel, the Fisher information

matrix is independent of Λ, and therefore the superharmonic function is independent of Λ.

However, in a similar case when C is diagonal, but with Λ =

 p, r

r, q

. The FIM
becomes

F (θ) =

 pq
1−C2

11

−r2

1−C11C22

−r2

1−C11C22

pq
1−C2

22

 1

det(Λ)
(3.4)
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Although the model is very similar to the previous case, we can see that the Fisher

information matrix now contains the white noise parameters p, r, q. The dependence be

tween ϵt,1 and ϵt,2 reflexes on the information matrix, resulting in the nondiagonal entries

being nonzero. From (Tanaka, 2018), we know that for a metric of the form

F (θ) =

 1
1−C2

11

1
1−C11C22

1
1−C11C22

1
1−C2

22

 ,

the superharmonic function could be 1 − C11C22. However, in (3.4), the superharmonic

function must also include p, q, r as inputs, so its form is still unknown.

For the general case of the VAR(1) model with dimension two, the Fisher information

matrix is as follows

F (θ) =

 pD11 + qD14 + r(D12 +D13), pD31 + qD34 + r(D32 +D33)

pD21 + qD24 + r(D22 +D23), pD41 + qD44 + r(D42 +D43)


⊗

 p, r

r, q

−1

where D = (I4 − C⊗ C)−1. This case shows that to compute and obtain the superhar

monic function of the general model, we must further simplify the metric or change to

another appropriate coordinate. For our current explicit form of the matrix, the possible

superharmonic function remains too complicated to predict.

The last case we like to highlight is the special case when Λ = σ2I2, the Fisher

information matrix is

F (θ) = f(θ)⊗ Λ−1

=
{[

(vec I2)T ⊗ I2

] [
I2 ⊗ ((I4 − C⊗ C)−1 vec(Λ))

]}
⊗ Λ−1

=
{[

(vec I2)T ⊗ I2

] [
I2 ⊗ ((I4 − C⊗ C)−1 vec(I2))

]}
⊗ I2

=

 D11 +D14, D31 +D34

D21 +D24, D41 +D44

⊗ I2,

where D = (I4 − C⊗ C)−1. Note that the FIM is independent of Λ, which differs from
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all the above cases. Only when the white noise in each dimension is independent and iden

tically distributed followingN (0, σ2), the matrix will be independent of Λ which is more

similar to the AR(p) case. This phenomenon stays true for all dimensions of the VAR(p)

model, so it is indeed an important case. With this special case, the superharmonic func

tion could be independent of Λ and can be derived following a similar method according

to Tanaka (2018).
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Chapter 4 Conclusion and Outlooks

4.1 Conclusion

We started this research to calculate the superharmonic prior of a VAR(p) model, and

we have computed the explicit Fisher information matrices to describe the model man

ifold. However, the calculation of the explicit form of Jeffreys prior and the Laplacian

of superharmonic functions remains an obstacle. The main difference between the AR(p)

models and the VAR(p) models is that for the general VAR(p) model, the Fisher metric

of the model manifold contains the parameter Λ. As a result, the corresponding superhar

monic function is unlikely to be independent of Λ, and it is difficult to predict its possible

forms. However, we study a special case when Λ = σ2In. In this case, the Fisher metric

is independent of Λ, so it will likely be a good first step for predicting and calculating the

superharmonic function. Also, according to Tanaka (2018), a change of coordinate on the

model manifold is essential to simplify the computation. Hence, we have several future

directions to take.

4.2 Future Directions

A viable change of variable of the AR(p) model is to consider the eigenvalue de

composition of the parameter matrix C and use the eigenvalues to construct a onetoone

relation with the original parameters. However, the parameter matrix, in this case, is a
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companion matrix of the form

C =



a1, a2, · · · , ap−1, ap

−1 0 0 0

0 −1
... 0

... ... · · · ... ...

0 0 · · · −1 0


= QDQ−1, D = diag (z1, z2, · · · , zp)

Because there are p parameters to be estimated in the companion matrix C, and there are

also p parameters on the diagonal entries ofD, the relation between the transformation is

clear. However, for a general parameter matrix of a VAR(1) model

C =


c11 · · · c1n
... ...

cn1 · · · cnn


the number of parameters is n2, which exceeds the number of its eigenvalues, so the above

method can not apply.

A possible choice is to consider the singular value decomposition of C = UΣV ⊤.

Here, U and V are unitary matrices, and Σ is a diagonal matrix. We need to define n2 pa

rameters from these three matrices. Since we assume stationarity for our model, the eigen

values {zi} of matrixC are inside the unit circle. Therefore, when it comes to determining

the superharmonic function, the possible candidate could be ϕ(θ) =
∏

i<j (1− zizj) just

like the one from an AR(p) model. This function not only ensures that it will be positive

but also suggests that ∆ϕ = −p(p−1)
2

ϕ in the AR(p) setting (Tanaka, 2018). So we hope

this function’s property will be preserved in the VAR(p) setting.

Another future direction is to establish the existence of the superharmonic functions

on the VAR(p) model manifold. Komaki (2006) pointed out that when the sectional curva

ture of the model manifold is negative everywhere, the superharmonic function must exist.

So with the Fisher metric of the VAR(p) model we derived, we can use it to calculate the

sectional curvature of the model manifold and verify the existence of the superharmonic

function,
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Last but not least, the Fisher information matrix of the VAR(p) model is of the form

F (θ) = f(θ) ⊗ Λ−1, which suggests that although the matrix has size n2p × n2p, its

property is mainly determined by f(θ), a np × np matrix. Note that the VAR model is

a submodel of the vector autoregressive movingaverage (VARMA) model, so if we can

extend our work to compute the Fisher information matrix of the VARMA model, the

intrinsic relations between the parameters could be further examined and discussed.

33

http://dx.doi.org/10.6342/NTU202301697


doi:10.6342/NTU202301697

34

http://dx.doi.org/10.6342/NTU202301697


doi:10.6342/NTU202301697

References

Amari, S. i. (2016), Information geometry and its applications, Vol. 194, Springer.

Berger, J. O. and Bernardo, J. M. (1992), ‘On the development of the reference prior

method’, Bayesian statistics 4(4), 35–60.

Brown, L. D. (1971), ‘Admissible estimators, recurrent diffusions, and insoluble boundary

value problems’, The Annals of Mathematical Statistics 42(3), 855–903.

Chen, W. Y. and Louck, J. D. (1996), ‘The combinatorial power of the companion matrix’,

Linear Algebra and its Applications 232, 261–278.

Choi, J. and Mullhaupt, A. P. (2015), ‘Geometric shrinkage priors for kählerian signal

filters’, Entropy 17(3), 1347–1357.

Cross, J. L., Hou, C. and Poon, A. (2020), ‘Macroeconomic forecasting with large

bayesian vars: Globallocal priors and the illusion of sparsity’, International Journal

of Forecasting 36(3), 899–915.

Den Haan, W. J. and Levin, A. (1998), ‘Vector autoregressive covariance matrix estima

tion’, University of California, San Diego, manuscript .

Ghosh, M. (2011), ‘Objective Priors: An Introduction for Frequentists’, Statistical Science

26(2), 187–202.

URL: https://doi.org/10.1214/10STS338

Hammarling, S. J. (1982), ‘Numerical solution of the stable, nonnegative definite lya

punov equation lyapunov equation’, IMA Journal of Numerical Analysis 2(3), 303–323.

Higham, N. J. (2008), Functions of matrices: theory and computation, SIAM.

35

http://dx.doi.org/10.6342/NTU202301697


doi:10.6342/NTU202301697

Kadiyala, K. R. and Karlsson, S. (1997), ‘Numerical methods for estimation and inference

in bayesian varmodels’, Journal of Applied Econometrics 12(2), 99–132.

Klein, A. (2000), ‘A generalization of whittle’s formula for the information matrix of

vectormixed time series’, Linear algebra and its applications 321(13), 197–208.

Komaki, F. (1999), ‘An estimating method for parametric spectral densities of gaussian

time series’, Journal of Time Series Analysis 20(1), 31–50.

Komaki, F. (2006), ‘Shrinkage priors for bayesian prediction’.

Langley, T. E., McNeill, A., Lewis, S., Szatkowski, L. and Quinn, C. (2012), ‘The impact

of media campaigns on smoking cessation activity: a structural vector autoregression

analysis’, Addiction 107(11), 2043–2050.

OpgenRhein, R. and Strimmer, K. (2007), ‘Learning causal networks from systems biol

ogy time course data: an effective model selection procedure for the vector autoregres

sive process’, BMC bioinformatics 8(2), 1–8.

Prüser, J. (2021), ‘The horseshoe prior for timevarying parameter vars and monetary pol

icy’, Journal of Economic Dynamics and Control 129, 104188.

Sims, C. A. (1980), ‘Macroeconomics and reality’, Econometrica: journal of the Econo

metric Society pp. 1–48.

Stock, J. H. and Watson, M. W. (2001), ‘Vector autoregressions’, Journal of Economic

perspectives 15(4), 101–115.

Tanaka, F. (2003), ‘The sectional curvature of ar model manfolds’, Tensor .

Tanaka, F. (2018), ‘Superharmonic priors for autoregressive models’, Information Geom

etry 1(2), 215–235.

Tanaka, F. and Komaki, F. (2008), ‘A superharmonic prior for the autoregressive process

of the secondorder’, Journal of Time Series Analysis 29(3), 444–452.

Welch, B. L. and Peers, H. (1963), ‘On formulae for confidence points based on integrals

of weighted likelihoods’, Journal of the Royal Statistical Society: Series B (Method

ological) 25(2), 318–329.

36

http://dx.doi.org/10.6342/NTU202301697


doi:10.6342/NTU202301697

Whittle, P. (1963), ‘On the fitting of multivariate autoregressions, and the approximate

canonical factorization of a spectral density matrix’, Biometrika 50(12), 129–134.

Wild, B., Eichler, M., Friederich, H. C., Hartmann, M., Zipfel, S. and Herzog, W. (2010),

‘A graphical vector autoregressive modelling approach to the analysis of electronic di

ary data’, BMC medical research methodology 10, 1–13.

37

http://dx.doi.org/10.6342/NTU202301697

	致謝
	摘要
	Abstract
	Contents
	Introduction
	Bayesian Estimation for VAR model
	Spectral Density and Information Geometry
	Superharmonic Prior for AR model

	Theoretical Preliminary
	Vector Autoregression Model of Order 
	Spectral Density Matrix of Time Series
	Information Geometry and Model Manifold
	Superharmonic Prior
	The Fisher Information Matrix of VAR(p)

	Main Results
	Fisher Matrix for VAR(1) model
	VAR(p) model as a VAR(1) model
	Relation with AR(p) Model under Change of Coordinate
	VAR(p) Model with Unknown Noise Covariance
	Example: VAR(1) Model with Dimension Two

	Conclusion and Outlooks
	Conclusion
	Future Directions

	References

