Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88074
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author吳慶洋zh_TW
dc.contributor.authorChing-Yang Wuen
dc.date.accessioned2023-08-08T16:10:48Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-06-
dc.identifier.citationReference
[1] T. -C. Huang et al., "A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With α-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control," in IEEE Journal of Solid-State Circuits, vol. 47, no. 4, pp. 852-862, April 2012.
[2] F. Santoro et al., "A Hysteretic Buck Converter With 92.1% Maximum Efficiency Designed for Ultra-Low Power and Fast Wake-Up SoC Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1856-1868, June 2018.
[3] K. Wei and D. B. Ma, "A 10-MHz DAB Hysteretic Control Switching Power Converter for 5G IoT Power Delivery," in IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2113-2122, July 2021.
[4] M. Zhao et al., "An Ultra-Low Quiescent Current Tri-Mode DC-DC Buck Converter With 92.1% Peak Efficiency for IoT Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 428-439, Jan. 2022.
[5] W. Huang, L. Liu, X. Liao, C. Xu and Y. Li, "A 240-nA Quiescent Current, 95.8% Efficiency AOT-Controlled Buck Converter With A2-Comparator and Sleep-Time Detector for IoT Application," in IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12898-12909, Nov. 2021.
[6] J. -G. Kang, J. Park, M. -G. Jeong and C. Yoo, "A Time-Domain-Controlled Current-Mode Buck Converter With Wide Output Voltage Range," in IEEE Journal of Solid-State Circuits, vol. 54, no. 3, pp. 865-873, March 2019.
[7] D. -H. Jung, K. Kim, S. Joo and S. -O. Jung, "0.293-mm2 Fast Transient Response Hysteretic Quasi- V2 DC–DC Converter With Area-Efficient Time-Domain-Based Controller in 0.35- μ m CMOS," in IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1844-1855, June 2018.
[8] V. Ivanov, R. Brederlow and J. Gerber, "An Ultra Low Power Bandgap Operational at Supply From 0.75 V," in IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1515-1523, July 2012
[9] M. A. P. Pertijs and W. J. Kindt, "A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping," in IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2044-2056, Oct. 2010
[10] Y. Zhang, M. Rodríguez and D. Maksimović, "Very High Frequency PWM Buck Converters Using Monolithic GaN Half-Bridge Power Stages With Integrated Gate Drivers," in IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7926-7942, Nov. 2016
[11] W. -C. Liu, C. -J. Chen, C. -H. Cheng and H. -J. Chen, "A Novel Accurate Adaptive Constant On-Time Buck Converter for a Wide-Range Operation," in IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3729-3739, April 2020
[12] Y. -C. Li, C. -J. Chen and C. -J. Tsai, "A Constant On-Time Buck Converter With Analog Time-Optimized On-Time Control," in IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3754-3765, April 2020
[13] S. J. Kim et al., "High Frequency Buck Converter Design Using Time-Based Control Techniques," in IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 990-1001, April 2015
[14] L. Kong, D. Chen, S. -F. Hsiao, C. -F. Nien, C. -J. Chen and K. -F. Li, "A Novel Adaptive-Ramp Ripple-Based Constant On-Time Buck Converter for Stability and Transient Optimization in Wide Operation Range," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1314-1324, Sept. 2018
[15] C. -F. Nien et al., "A Novel Adaptive Quasi-Constant On-Time Current-Mode Buck Converter," in IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 8124-8133, Oct. 2017
[16] C. -J. Chen, S. -H. Lu, S. -F. Hsiao, Y. -J. Chen and J. -R. Huang, "A Current-Mode Buck Converter With Reconfigurable On-Chip Compensation and Adaptive Voltage Positioning," in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 485-494, Jan. 2019
[17] C. -C. Fang and C. -J. Chen, "Subharmonic Instability Limits for V2 -Controlled Buck Converter With Outer Loop Closed/Open," in IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1657-1664, Feb. 2016
[18] I-Chieh Wei, Dan Chen, Yu-Cheng Lin and Ching-Jan Chen, "The stability modeling of ripple-based constant on-time control schemes used in the converters operating in DCM," 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, 2012
[19] C. -J. Tsai, I. -F. Lo, T. -H. Lin and C. -J. Chen, "An One-Cycle Load Transient Response and 0.81 mV/A Load-Regulation Time-Domain Cascaded-VCO-Controlled Buck Converter for Powering Gaming SoC," 2022 IEEE Asian Solid-State Circuits Conference (A-SSCC), Taipei, Taiwan, 2022
[20] W. -H. Yang et al., "A Constant-on-Time Control DC–DC Buck Converter With the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement," in IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 6187-6198, July 2018
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88074-
dc.description.abstract這篇論文介紹了一種純NMOS電晶體功率級(power stage)、被動式斜率補償(Passive ramp)、導通-關斷時間控制(on-off-time control)且靜態電流(quiescent current)僅有200 nA的降壓轉換器(buck converter)。在設計中,還有一種被稱為深度睡眠(deep sleep mode)的模式,可以在必要時將除了少數主要比較器與少數偏壓電路之外的整個控制電路群關閉。使用被動式斜率補償也規避了相較於傳統上較為耗電的斜率產生器。這些功能最佳化了此電路的靜態電流,甚至在極低負載中(ultra-light load)有一半以上的功率損耗是來自於製程上無法避免的漏電。在小訊號分析中,由輸出電感與輸出電容產生的複數極點(LC complex pole)會被被動式斜率補償中的前饋(feed forward)機制解耦(decouple)。我們也設計了一個較低頻寬的迴路,用來做直流偏壓消去(DC offset cancellation)。它能夠在不影響暫態響應的同時,決定的整個電路的頻寬與穩定度。這種雙迴路(dual loop)能夠同時保證輸出電壓的穩定與快速的暫態響應。為了達成200 nA靜態電流的目標,我們設計了一個帶隙參考電壓(bandgap reference),它會在深度睡眠模式時切換到低漏電採樣模式(low leakage sample and hold),使其可以僅在極短時間內運作,常時保持關閉,使其平均功耗降到極低。在負載暫態響應方面,我們提出了一種創新的導通-關斷時間控制(on-off-time control)的控制法,可以在導通時間控制(on-time control)與關斷時間控制(off-time control)自動且順暢的切換,使得導通時間與關閉時間皆能隨著負載變化而自由延展。
所提之晶片原型採用台積電12nm CMOS製程,並且在包含了功率級與引腳的同時僅僅占用0.36 mm2的面積。純NMOS電晶體功率級與共封裝的去彈跳電路(debouncing circuit)與靴帶式電路(bootstrap circuit)表現出僅有35 mOhm的導通電阻(Rdson)。在模擬中顯示,切換頻率最高為4.8 MHz、僅有200 nA的靜態電流且在負載從10 μA到2 A皆有大於90%的效率。而在1 μA與500mA的負載瞬態響應中,所提出的導通-關斷時間控制達成23 mV/ 17 mV 的過衝/下衝,與800-ns的安定時間。這個降壓轉換器架構最初由蔡杰儒學長提出並由我進行電路設計與實現。
zh_TW
dc.description.abstractThis thesis presents a 200nA quiescent current, pure NMOS power stage, passive ramp (PSR) on-off-time controlled buck converter for a modern mobile silicon-on-chip (SoC) for a longer battery life. In the design, there’s a mode called deep sleep mode (DSM) that only the main comparator is alive in the whole circuit. Passive ramp modulation also plays an important role to prevent the conventional power-hungry ramp generator. These functions extremely improve the quiescent current to a new level. Eventually more than half of the power consume is leakage current. In a small signal analysis scheme, the LC complex poles are decoupled by the feedforward component benefit from PSR modulation. I also design an extra loop with relatively low bandwidth for DC correction. It also defines the bandwidth of the whole loop but not affecting the modulator gain. This dual loop scheme ensures the stable output voltage DC level and the fast transient speed, simultaneously. To achieve 200nA quiescent current, I also design a bandgap reference that can be totally shut down with a low leakage sample and hold technique. For load transient response, an innovative on-off-time control scheme is proposed. The modulation of this control switched between on-time and off-time control, smoothly and automatically.
The proposed chip prototype is fabricated in TSMC 12nm CMOS process and only occupies 0.36mm2 with the power stage and pads. An N-FinFET power stage with co-package designed debounce circuitry and bootstrap circuit performs a 35 mOhm Rdson with all trace resistance. It shows a 4.8MHz switching frequency, 200nA quiescent current, and a loading range from 10μA to 2A with > 90% efficiency in simulation. The proposed passive ramp constant-on-off time controller achieves a 23 mV/ 17 mV undershoot/overshoot voltage with 800 ns settling time with a 1 μA to 500 mA loading step. The architecture of the buck converter was initially proposed by Senior Scholar Chieh-Ju Tsai and subsequently, I undertook the circuit design and implementation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:10:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:10:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents

致謝 I
中文摘要 II
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables XII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Prior works 1
1.3 Chip Design goal 2
1.4 Analog Characteristics of 12nm FinFET Process 3
1.5 Thesis Outline 4
Chapter 2 Proposed converter and Control Scheme 4
2.1 Full Architecture 4
2.2 ALL N-FINFET Power stage Co-Design with Package 8
2.3 Control loop 10
2.4 Stability analyzation for Control loop 15
Chapter 3 Key Subblocks 19
3.1 Power stage and bootstrap circuit 19
3.2 The DC cancellation loop with auto-zero technique 24
3.3 Ultra-low quiescent current bandgap reference voltage 28
3.4 10nA Constant gm circuit 35
3.5 Adaptive dead-time generator 36
3.6 Main comparator 38
Chapter 4 Simulations and Measurements 43
4.1 Chip Overview 43
4.2 Simulation and Measurement result 47
Chapter 5 Conclusions and Future works 59
5.1 Conclusions 59
5.2 Future works 60
Reference 62
-
dc.language.isozh_TW-
dc.title一個僅200nA靜態電流且使用十二奈米鰭式電晶體的 被動漣波導通關斷控制降壓型轉換器zh_TW
dc.titleA 200 nA Quiescent Current Buck Converter with Passive Ramp On-Off-Time Control in 12 nm FinFETen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳信樹;謝俊禹zh_TW
dc.contributor.oralexamcommitteeHsin-Shu Chen;Chun-Yu Hsiehen
dc.subject.keyword直流-直流轉換器,降壓轉換器,導通-關斷時間控制,被動式斜率補償,純NMOS電晶體功率級,低靜態電流,直流偏壓消去,zh_TW
dc.subject.keywordDC-DC Converter,buck converter,on-off-time control,passive ramp,N-FinFET power stage,low Iq,DC cancellation loop,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202301343-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved