Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86293
Title: 使用資訊熵分析房價成長風險
Housing Price Growth at Risk by Information Entropy
Authors: Ying-Hua Li
李盈樺
Advisor: 王泓仁(Hung Jen Wang)
Co-Advisor: 陳南光(Nan Kuang Chen)
Keyword: 房市,資訊熵,無條件分量迴歸,條件分量迴歸,成長風險,
housing,information entropy,unconditional quantile regression,conditional quantile regression,growth at risk,
Publication Year : 2022
Degree: 碩士
Abstract: 本文以新型的方法資訊熵建構台灣房價風險值模型,模型設定以無條件分量迴歸做為房屋市場、條件分量迴歸歸作為房屋在金融市場的模型,兩者相減為房屋市場中潛在的不確定性,也就是房價風險。無條件分量迴歸為對傳統分量迴歸的拓展和補充。研究有關無條件分量迴歸的理論與方法正在逐漸完善中,本文旨在介紹模型並整理相關文獻。實證結果顯示,房價成長的變動具有不對稱性,且只能做部份預測。考慮到參數及非參數分配是否擬合台灣房價成長的結果,我們使用機率積分轉換 (Probability integral transform) 作為選定最佳預測的模型。最後根據結果,左尾在危機時的波動大於右尾在房價成長擴張期,我們發現此模型對於預測房價成長的下行風險相對於上行風險更具可行性。
The thesis studies the risk of house price changes in Taiwan, particularly its downside risk of house price growth by using information entropy as the new growth-at-risk framework. We used conditional and unconditional quantile regression to evaluate the housing market, where the conditional quantile is estimated based on the financial market information. The uncertainty of the housing market was calculated by deducting the conditional quantile regression results from the unconditional quantile regression results. We used a few parametric and nonparametric methods to fit model, and used probability integral transform tests to select the optimal density function that fits Taiwan's data. We found that housing price growth risks are time-varying, asymmetric, and partly predictable. We also found that the left tail of the future housing price growth distribution is responsive during crisis while the right tail does not show responsiveness during expansions. The result indicates that the model is more capable in forecasting downside risk as opposed to the upside risk.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86293
DOI: 10.6342/NTU202202740
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2022-08-29
Appears in Collections:經濟學系

Files in This Item:
File SizeFormat 
U0001-2408202211034300.pdf2.59 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved