Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86293
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泓仁(Hung Jen Wang)
dc.contributor.authorYing-Hua Lien
dc.contributor.author李盈樺zh_TW
dc.date.accessioned2023-03-19T23:47:22Z-
dc.date.copyright2022-08-29
dc.date.issued2022
dc.date.submitted2022-08-26
dc.identifier.citationAdrian, T., Boyarchenko, N., and Giannone, D. (2019). Vulnerable growth. American Economic Review, 109(4):1263–89. Alter, M. A. and Mahoney, E. M. (2020). Household debt and house prices­at­risk: A tale of two countries. International Monetary Fund. Alvarez­Ramirez, J., Rodriguez, E., and Alvarez, J. (2012). A multiscale entropy approach for market efficiency. International Review of Financial Analysis, 21:64–69. Amisano, G. and Giacomini, R. (2007). Comparing density forecasts via weighted likeli­ hood ratio tests. Journal of Business & Economic Statistics, 25(2):177–190. Artzner, P., Delbaen, F., Eber, J.­M., and Heath, D. (1999). Coherent measures of risk. Mathematical finance, 9(3):203–228. Bera, A. K. and Park, S. Y. (2008). Optimal portfolio diversification using the maximum entropy principle. Econometric Reviews, 27(4­6):484–512. Chabi­Yo, F. and Colacito, R. (2017). The term structures of coentropy in international financial markets. Fisher College of Business Working Paper, (2013­03):17. Chatterjee, S. (2015). Centre for central banking studies. Modelling credit risk. Bank of England. Chernozhukov, V., Fernández­Val, I., and Galichon, A. (2010). Quantile and probability curves without crossing. Econometrica, 78(3):1093–1125. Dale, R. (1996). Regulating the new financial markets. In The Future of the Financial System, Proceedings of a Conference, Reserve Bank of Australia, pages 215–245. Deghi, A., Katagiri, M., Shahid, M. S., and Valckx, N. (2020). Predicting downside risks to house prices and macro­financial stability. International Monetary Fund. Dong, X., Li, C., and Yoon, S.­M. (2020). Asymmetric dependence structures for regional stock markets: An unconditional quantile regression approach. The North American Journal of Economics and Finance, 52:101111. Firpo, S., Fortin, N. M., and Lemieux, T. (2009). Unconditional quantile regressions. Econometrica, 77(3):953–973. Jiang, L., Wu, K., and Zhou, G. (2018). Asymmetry in stock comovements: An entropy approach. Journal of Financial and Quantitative Analysis, 53(4):1479–1507. Killewald, A. and Bearak, J. (2014). Is the motherhood penalty larger for low­wage women? a comment on quantile regression. American Sociological Review, 79(2):350– 357. Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical statistics, 22(1):79–86. Maclean, J. C., Webber, D. A., and Marti, J. (2014). An application of unconditional quantile regression to cigarette taxes. Journal of Policy Analysis and management, 33(1):188–210. Martínez­García, E. and Grossman, V. (2020). Explosive dynamics in house prices? an exploration of financial market spillovers in housing markets around the world. Journal of International Money and Finance, 101:102103. Pavlidis, E., Yusupova, A., Paya, I., Peel, D., Martínez­García, E., Mack, A., and Gross­man, V. (2016). Episodes of exuberance in housing markets: in search of the smoking gun. The Journal of Real Estate Finance and Economics, 53(4):419–449. Rothe, C. (2010). Nonparametric estimation of distributional policy effects. Journal of Econometrics, 155(1):56–70. Schmidt, L. and Zhu, Y. (2016). Quantile spacings: A simple method for the joint esti­ mation of multiple quantiles without crossing. Available at SSRN 2220901. Shannon, C. E. (1948). A mathematical theory of communication. The Bell system tech­ nical journal, 27(3):379–423. Silverman, B. (2003). Density estimation for statistics and data analysis chapter 1 and 2. Yao, Y. and Wang, Y. (2001). Measuring economic downside risk and severity: growth at risk. Available at SSRN 285255. Yu, J.­R., Lee, W.­Y., and Chiou, W.­J. P. (2014). Diversified portfolios with different entropy measures. Applied Mathematics and Computation, 241:47–63. Zhou, R., Cai, R., and Tong, G. (2013). Applications of entropy in finance: A review. Entropy, 15(11):4909–4931.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86293-
dc.description.abstract本文以新型的方法資訊熵建構台灣房價風險值模型,模型設定以無條件分量迴歸做為房屋市場、條件分量迴歸歸作為房屋在金融市場的模型,兩者相減為房屋市場中潛在的不確定性,也就是房價風險。無條件分量迴歸為對傳統分量迴歸的拓展和補充。研究有關無條件分量迴歸的理論與方法正在逐漸完善中,本文旨在介紹模型並整理相關文獻。實證結果顯示,房價成長的變動具有不對稱性,且只能做部份預測。考慮到參數及非參數分配是否擬合台灣房價成長的結果,我們使用機率積分轉換 (Probability integral transform) 作為選定最佳預測的模型。最後根據結果,左尾在危機時的波動大於右尾在房價成長擴張期,我們發現此模型對於預測房價成長的下行風險相對於上行風險更具可行性。zh_TW
dc.description.abstractThe thesis studies the risk of house price changes in Taiwan, particularly its downside risk of house price growth by using information entropy as the new growth-at-risk framework. We used conditional and unconditional quantile regression to evaluate the housing market, where the conditional quantile is estimated based on the financial market information. The uncertainty of the housing market was calculated by deducting the conditional quantile regression results from the unconditional quantile regression results. We used a few parametric and nonparametric methods to fit model, and used probability integral transform tests to select the optimal density function that fits Taiwan's data. We found that housing price growth risks are time-varying, asymmetric, and partly predictable. We also found that the left tail of the future housing price growth distribution is responsive during crisis while the right tail does not show responsiveness during expansions. The result indicates that the model is more capable in forecasting downside risk as opposed to the upside risk.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:47:22Z (GMT). No. of bitstreams: 1
U0001-2408202211034300.pdf: 2648472 bytes, checksum: b73ea23e9dde6936903321dfbc88d8d1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii Abstract iv 摘要 v Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Related Literature 4 Chapter 3 Methods 7 3.1 Information Entropy .......................... 7 3.2 Growth at Risk(GaR) ......................... 10 3.2.1 Value at Risk ............................. 10 3.2.2 GaR.................................. 12 3.3 CQR & UQR.............................. 13 Chapter 4 Data and Model 16 4.1 Data................................... 16 4.2 Quantile Regression .......................... 17 4.3 Density Forecast ............................ 18 4.4 Entropy Measures ........................... 19 Chapter 5 Estimation Results 23 5.1 Out of Sample Evidence ........................ 23 5.2 Predicted Distributions of Growth ................... 25 5.3 Entropy Risks.............................. 25 Chapter 6 Conclusion 31 References 32 Appendix A — Upside Entropy and Downside Entropy 35
dc.language.isoen
dc.subject無條件分量迴歸zh_TW
dc.subject成長風險zh_TW
dc.subject資訊熵zh_TW
dc.subject房市zh_TW
dc.subject條件分量迴歸zh_TW
dc.subjectconditional quantile regressionen
dc.subjectinformation entropyen
dc.subjectunconditional quantile regressionen
dc.subjecthousingen
dc.subjectgrowth at risken
dc.title使用資訊熵分析房價成長風險zh_TW
dc.titleHousing Price Growth at Risk by Information Entropyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor陳南光(Nan Kuang Chen)
dc.contributor.oralexamcommittee賴宏彬(Hung Pin Lai)
dc.subject.keyword房市,資訊熵,無條件分量迴歸,條件分量迴歸,成長風險,zh_TW
dc.subject.keywordhousing,information entropy,unconditional quantile regression,conditional quantile regression,growth at risk,en
dc.relation.page37
dc.identifier.doi10.6342/NTU202202740
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-29
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
dc.date.embargo-lift2022-08-29-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
U0001-2408202211034300.pdf2.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved