Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成zh_TW
dc.contributor.advisorChow-Shing Shinen
dc.contributor.author黃曼薇zh_TW
dc.contributor.authorMan-Wei Huangen
dc.date.accessioned2023-03-19T23:41:13Z-
dc.date.available2024-04-03-
dc.date.copyright2022-09-12-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1]. 沈育芳、謝明佑、and 陳怡文, 3D成型技術之介紹與應用. 科儀新知219期, 2019 : p. 90-98.
[2]. 3D Printer Workshop - From your idea to a real object. 檢自 : https://www.slideshare.net/thingslab/3d-printer-workshop-from-your-idea-to-a-real-object.
[3]. 葉錫誼, 3D列印技術之發展現況與醫學上之應用.當代醫學法規45期, 2014 : p.1.
[4]. Shahrubudin, N. , et al., An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 2019, 35 : p.1286-1296.
[5] Feng Zhang , et al. , The recent development of vat photopolymerization: A review. Additive Manufacturing, 2021, 48
[6]. .Gibson, I.,et al. , Additive Manufacturing Technologies-3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2014 : p. 63-65、245.
[7]. Bahnini, I., et al., Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4) : p. 147-161.
[8]. Po-TingLan , et al. , Determining fabrication orientations for rapid prototyping with Stereolithography apparatus. Computer-Aided Design , 1997 , 29 : p.53-62.
[9]. Johanna Schmidt , et al. , Digital light processing of ceramic components from polysiloxanes. Journal of the European Ceramic Society , 2018 , 38 : p.57-66.
[10]. Harby, Donald W., et al. SERVICE LEARNING: A Comparative Study on the Compression Strength Properties of 3D-Printed Rapid Prototyped Components Utilizing Various Manufacturing Build Parameters.
[11]. 葉雲鵬 and 鄭正元, 智慧機械與數位製造 3D 列印的發展. 科儀新知 222 期, 2020 : p. 92-103.
[12]. Lee, Jia Min, et al. , 3D bioprinting processes: A perspective on classification and terminology. International journal of bioprinting , 2018, 4(2).
[13]. 蔡福森 , DLP 投影機技術與産品動態. 光連:光電產業與技術情報, 1998 , 18 : p. 39-42.
[14]. 投影技術3LCD與DLP之比較. 檢自 : https://tenium.co/%E6%8A%95%E5%BD%B1%E6%8A%80%E8%A1%93-3lcd-%E8%88%87-dlp-%E4%B9%8B%E6%AF%94%E8%BC%83/
[15]. 購買微型投影機前要知道的三件事. 檢自 : https://www.benq.com/zh-tw/knowledge-center/technology/projector-how-to-buy-pico-projector.html
[16]. Wang, Zhen, et al. , Digital micro-mirror device-based light curing technology and its biological applications. Optics & Laser Technology , 2021 , 143.
[17]. Introduction to ±12 Degree Orthogonal Digital Micromirror Devices (DMDs). 檢自 : https://www.ti.com/lit/an/dlpa008b/dlpa008b.pdf
[18]. Van Kessel, Peter F., et al. , A MEMS-based projection display. Proceedings of the IEEE , 1998 , 86.8 : p.1687-1704.
[19]. Santoliquido, O. , Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society , 2019 , 39.6 : p.2140-2148.
[20]. Bonada, J., et al. , Optimisation procedure for additive manufacturing processes based on mask image projection to improve Z accuracy and resolution. Journal of manufacturing processes , 2018 , 31 : p.689-702.
[21]. 唐啟軒, 探討利用 DLP光固化製程列印具導電性結構. 國立臺灣大學機械工程學系研究所學位論文, 2020 : p.1–145.
[22]. Pham, Duc Truong, and C. Ji. , A study of recoating in stereolithography. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science , 2003 , 217.1 : p.105-117.
[23]. Mahindru, D. V., S. R. M. G. P. C. Priyanka Mahendru, and Lucknow Tewari
Ganj. , Review of rapid prototyping-technology for the future. Global journal of
computer science and technology , 2013.
[24]. Iijima, Sumio , Helical microtubules of graphitic carbon. nature , 1991 , 354.6348 : p.56-58.
[25]. Rathinavel, S., K. Priyadharshini, and Dhananjaya Panda , A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B , 2021 , 268.
[26]. K. Awasthi, A. Srivastava, O. N. Srivastava , Synthesis of carbon nanotubes. journal of nanoscience and nanotechnology, 2005 , 5 : p.1616-1636.
[27]. 王鼎翔、呂明生、張守一 , 先進奈米複合碳材料之未來發展與應用趨勢.材料世界網 , 2016.
[28]. David, Madalina Elena, et al. , Nanomaterials used in conservation and restoration of cultural heritage: An up-to-date overview. Materials , 2020,13.9 .
[29]. Mu, Quanyi, et al. , Digital light processing 3D printing of conductive complex structures.Additive Manufacturing , 2017 , 18 : p.74-83.
[30]. Mamishev, Alexander V., et al. , Interdigital sensors and transducers. Proceedings of the IEEE , 2004 , 92.5 : p.808-845.
[31]. Chetpattananondh, Pakamas, Kittikhun Thongpull, and Kanadit Chetpattananondh. , Interdigital capacitance sensing of moisture content in rubber wood. Computers and Electronics in Agriculture , 2017 , 142 : p.545-551.
[32]. Kidner, N. J., et al. , Modeling interdigital electrode structures for the dielectric characterization of electroceramic thin films. Thin solid films , 2006 , 496.2 : p.539-545.
[33]. Liu, Haitao, et al. , An interdigitated impedance microsensor for detection of moisture content in engine oil. Nanotechnology and Precision Engineering 2020 , 3.2 : p.75-80.
[34]. Mukhopadhyay, Subhas Chandra, et al. , Interdigital Sensors: Progress Over the Last Two Decades. Springer Nature, 2021 , 36.
[35]. Martinez-Estrada, Marc, et al. , Embroidery textile moisture sensor.Multidisciplinary Digital Publishing Institute Proceedings , 2018 , 2.13.
[36]. Harris, Nicholas R., and Alexander Stonard. , A printed capacitance sensor for soil moisture measurement. Multidisciplinary Digital Publishing Institute Proceedings , 2018 , 2.13.
[37]. Afsarimanesh, Nasrin, et al. , Interdigital sensors: biomedical, environmental and industrial applications. Sensors and Actuators A: Physical , 2020 , 305.
[38]. Syaifudin, AR Mohd, K. P. Jayasundera, and S. C. Mukhopadhyay. , A novel planar interdigital sensor based sensing and instrumentation for detection of dangerous contaminated chemical in seafood. In 2009 IEEE Instrumentation and Measurement Technology Conference. 2009 : p.701-706.
[39]. Atalay, Ozgur. , Textile-based, interdigital, capacitive, soft-strain sensor for wearable applications. Materials 2018 , 11.5.
[40]. Li, Jinggao, et al. , Interdigital capacitive strain gauges fabricated by direct-write thermal spray and ultrafast laser micromachining. Sensors and Actuators A: Physical , 2007 , 133.1 : p.1-8.
[41]. 天宜股份有限公司,桌上型恆溫恆濕箱.檢自 : http://www.tbillion.com.tw/tth-a1t.html.
[42]. 黃柏翰 , DLP列印範圍延伸之探討. 國立臺灣大學機械工程學系研究所學位論文, 2020 : p.1-137.
[43]. 奈米碳管場效電晶體. 檢自 : https://www.digitimes.com.tw/col/article.asp?id=1089
[44]. Yeow, J. T. W., and J. P. M. She. Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology , 2006 , 17.21.
[45]. Huang, Yunzhi, Zheng Zhan, and Nicola Bowler. Optimization of the coplanar interdigital capacitive sensor. AIP conference proceedings , No. 1. AIP Publishing LLC, 2017 , 1806.
[46]. Alam, Md Nazmul, et al , Concrete moisture content measurement using interdigitated near-field sensors. IEEE sensors journal , 2010 , 10.7 : p.1243-1248.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86188-
dc.description.abstract本研究以混入奈米碳管的光敏樹脂作為列印原料,使用以DLP投影機作為光源、增設刮刀機構的DLP上照式系統印製出具有導電性的結構,並探討列印原料固化前、中、後的電阻與相關參數之間的關係。列印原料根據混入的奈米碳管外徑和長度的不同分成兩種,探討奈米碳管尺寸對列印原料電阻的影響。
首先探討列印原料內的奈米碳管經設備分散均勻後,列印原料電阻與時間之間的關係,並延伸探討同一時間下列印原料電阻與施加之電流之間的關係,接著在列印過程中同步量測列印原料的電阻,更進一步了解列印過程中列印原料的電阻變化,並比較列印原料固化前後的電阻。
印製出具有導電性的結構後,嘗試對結構進行高溫加熱,探討加熱前後電阻的變化,並另外嘗試將結構放置於兩個不同濕度的環境下一個月,觀察水氣對結構電阻的影響。
最後印製出指叉結構,並說明列印過程中遇到的問題,接著對指叉結構進行實驗得到其電容、阻抗與環境溫濕度之間的關係,並計算出理論電容與相關參考文獻進行比較。
zh_TW
dc.description.abstractIn this study, the photosensitive resin mixed with carbon nanotubes was used as the printing materials, and the conductive structures were printed by a DLP (Digital Light Processing) top-down system with the DLP projector as light source and the additional sweeper mechanism. The relationship between the resistance of the printing materials before, during, and after curing and the related parameters was discussed. The printing materials were divided into two types according to outer diameter and length of mixed carbon nanotubes, and the influence of size of carbon nanotubes on the resistance of the printing materials was discussed.
Firstly of all, the relationship between a resistance of the printing materials and a time after carbon nanotubes in the printing materials were uniformly dispersed by equipments was discussed, and the relationship between the resistance of the printing materials and applied current at the same time was further discussed. Then, the resistance of the printing materials was measured simultaneously during printing process in order to know more about the resistance change of the printing materials during printing process, and compared the resistance of the printing materials before and after curing.
After printing and getting the conductive structures, this study tried to heat the structures at high temperature to discuss the change of the resistance, and also tried to place the structures in two environments with different humidity for a month to observe the effect of moisture on the resistance of the structures .
Finally, the interdigitated structures were printed and gotten, and the problems encountered in the process of printing the interdigitated structures were explained. Then, the interdigital structures were tested to obtain the relationship between their capacitance and impedance and ambient temperature and humidity.Then, the theoretical capacitance was calculated and compared with related references.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:41:13Z (GMT). No. of bitstreams: 1
U0001-1308202216021400.pdf: 13365204 bytes, checksum: 4e5b63e3bd1197f8db440e7827313c4a (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 X
表目錄 XIX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 積層製造成型技術(Additive Manufacturing) 4
2.1.1 光聚合固化(Vat Polymerization) 5
2.2 DLP光固化成型技術(Digital Light Processing) 5
2.2.1 DLP光學投影機 6
2.2.2 DMD(Digital Micro-mirror Device)晶片 6
2.2.3 DLP上照式及下照式製程之比較 7
2.2.3.1 DLP上照式製程 8
2.2.3.2 DLP下照式製程 9
2.2.3.3 比較 9
2.3 裝載刮刀機構(Sweeper)的光聚合固化技術 9
2.4 利用DLP光固化成型技術印製具有奈米碳管的結構 11
2.4.1 奈米碳管(Carbon Nanotube,CNT) 11
2.4.2 相關文獻回顧 12
2.5 指叉電極(Interdigital Electrode) 13
2.5.1 幾何結構和歷史發展 13
2.5.2 工作原理(Work Principle) 13
2.5.3 應用 14
第三章 實驗設備及系統架構 16
3.1 列印系統架構與相關設備 16
3.1.1 DLP光學投影機 17
3.1.2 移動平台 17
3.1.3 刮刀機構 17
3.1.4 列印平台 18
3.1.5 CIS對焦系統 19
3.1.6 馬達及曝光控制軟體Creation Woekshop 20
3.2 實驗材料 20
3.2.1 Deep Black 3D列印用光敏樹脂 20
3.2.2 奈米碳管 21
3.3 製作具導電性之光敏樹脂用設備 21
3.3.1 電子天秤 21
3.3.2 超音波打碎機與高速度均質機 22
3.4 實驗設備 22
3.4.1 熱風循環烘箱 22
3.4.2 恆溫恆濕箱 22
3.5 導電性量測用設備 23
3.5.1 電源量測儀器 23
3.5.2 多功能I/O介面卡 23
3.6 量測設備 23
3.6.1 萬用電錶 23
3.6.2 LCR電錶 23
3.6.3 立體顯微鏡 24
3.7 其他設備 24
3.7.1 導電銀膠 24
3.7.2 電子防潮箱 24
3.7.3 指針式溫溼度計 24
第四章 實驗原理及流程 25
4.1 列印流程 25
4.2 CAD模型設計 26
4.2.1 指叉結構 26
4.2.2 間距測試模型 27
4.2.3 長方體 27
4.3 調降曝光圖灰階 28
4.3.1 原因 28
4.4 改寫G-code和CWS檔 29
4.4.1 刮刀列印製程執行步驟 29
4.4.2 G-code 30
4.4.2.1 G-code架構 30
4.4.2.2 改寫說明 31
4.4.3 CWS檔 32
4.4.3.1 CWS檔之介紹 32
4.4.3.2 改寫說明 32
4.5 列印平台對焦 33
4.6 調整刮刀高度及初始位置 34
4.7 調配樹脂 35
4.7.1 奈米碳管濃度 35
4.8 樹脂液面對齊蓋玻片表面 36
4.9 表面觀察與電學性質量測 36
4.9.1 表面觀察 36
4.9.2 電學性質量測 36
第五章 實驗結果及討論 38
5.1 樹脂電阻與時間之關係探討 38
5.1.1 目的 38
5.1.2 樹脂電壓變化量測流程 39
5.1.3 摻入0.3wt%MNS-CNT的DB樹脂量測結果與討論 40
5.1.4 摻入不同濃度C-CNT的DB樹脂量測結果與探討 43
5.2 樹脂電阻與施加之電流的關係探討 46
5.2.1 目的與步驟 46
5.2.2 摻入0.3wt%MNS-CNT的DB樹脂量測結果與討論 47
5.2.3 摻入不同濃度C-CNT的DB樹脂量測結果與討論 48
5.3 玻璃棒攪拌對樹脂電阻的影響探討 49
5.3.1 目的與步驟 49
5.3.2 量測結果與討論 50
5.4 濕度對結構電阻的影響探討 52
5.4.1 目的與流程 52
5.4.2 量測結果與討論 53
5.5 列印過程中樹脂電阻變化探討 54
5.5.1 目的與流程 54
5.5.2 摻入0.3wt%MNS-CNT的DB樹脂量測結果與探討 55
5.5.3 MNS-CNT0.3固化前後電阻的比較 57
5.5.4 摻入不同濃度C-CNT的DB樹脂量測結果與探討 61
5.5.5 MNS-CNT與C-CNT之比較 65
5.6 與參考文獻使用之列印原料的比較 65
5.6.1 目的與步驟 65
5.6.2 結果與討論 66
5.7 高溫加熱對結構電阻的影響探討 67
5.7.1 目的與步驟 67
5.7.2 量測結果與討論 68
5.7.3 對導電銀膠進行多次高溫加熱後之結果 72
5.8 指叉結構的偵測靈敏度測試 73
5.8.1 目的 73
5.8.2 列印遇到的問題 73
5.8.3 偵測靈敏度實驗流程 76
5.8.4 對濕度的偵測靈敏度實驗結果 77
5.8.5 對溫度的偵測靈敏度實驗結果 80
5.8.6 與參考文獻之比較 82
5.8.7 濕度與指叉結構直流電阻之關係探討 84
第六章 結論及未來展望 84
6.1 結論 87
6.2 未來展望 87
參考文獻 89
附錄 94
-
dc.language.isozh_TW-
dc.subject奈米碳管zh_TW
dc.subject電阻zh_TW
dc.subjectDLP光固化技術zh_TW
dc.subject阻抗zh_TW
dc.subject指叉電極zh_TW
dc.subject電容zh_TW
dc.subjectInterdigital Electrodeen
dc.subjectCapacitanceen
dc.subjectImpedanceen
dc.subjectResistanceen
dc.subjectCarbon Nanotubeen
dc.subjectDLP Vat Polymerizationen
dc.title含奈米碳管的光固化樹脂列印成品導電性探討zh_TW
dc.titleStudy on the conductivity of printed product which is made from photosensitive resin containing carbon nanotubeen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林志郎;劉德騏zh_TW
dc.contributor.oralexamcommitteeChih-Lang Lin;De-Qi Liuen
dc.subject.keywordDLP光固化技術,奈米碳管,指叉電極,電阻,電容,阻抗,zh_TW
dc.subject.keywordDLP Vat Polymerization,Carbon Nanotube,Interdigital Electrode,Resistance,Capacitance,Impedance,en
dc.relation.page144-
dc.identifier.doi10.6342/NTU202202361-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2022-09-12-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf13.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved