Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86031
Title: 使用雙向卷積長短期記憶網路的全持續時間閃焰檢測、分類和區域提取
Full Duration Flare Detection, Classification and Region Extraction using Bidirectional Convolutional LSTMs
Authors: Nikita Mikhaylovich Galayda
黎軒喬
Advisor: 莊永裕(Yung-Yu Chuang)
Keyword: 雙向卷積長短期記憶網路,耀斑,全持續時間,多類分類,
Bidirectional Convolutional LSTM,Solar Flare,Full Duration,Multi Class Classification,
Publication Year : 2022
Degree: 碩士
Abstract: 太陽閃焰對於地球有著深遠影響,因此一直是研究人員關注的焦點之一。目前已有許多關於太陽閃焰的預測以及偵測的相關研究,但是在檢測閃焰的整個持續時間仍然有待探索。在這項研究中,我們提出了一種用於在極紫外線範圍內的圖像上使用雙向 LSTM 在整個持續時間內偵測、分類和提取太陽閃焰區域的自動系統。與當前的許多研究不同,我們在短時間內使用圖像來訓練我們的網路。此外,我們也提出了一種自定義的資料集生成方法,該方法能夠在閃焰期間創建全太陽圖像序列,特別是閃焰區域。為了利用耀斑事件的時間和空間訊息,我們使用多個卷積 LSTM,從而得到一個相對輕量級的模型。我們的模型在僅使用圖像資料的持續時間的條件下,可以成功檢測閃焰的近似值,這是在該領域針對未探索問題的一種新穎方法在該領域。
Solar flares have been one of the focal interests among researchers, as they have a profound effect on Earth. Both prediction and detection of solar flares are well studied topics in the field, however detecting the full duration of a flare has yet to be explored. In this research, we propose an automatic system for detection, classification, and extraction of solar flare regions for their entire duration using bidirectional LSTMs on images in the Extreme Ultra Violet range. Unlike numerous current research, we use images within a short time window to train our network. Moreover, a custom dataset generation method has also been proposed, which is able to create sequences of images of the full sun during a flare, as well as flaring regions specifically. In order to exploit both the temporal and spatial information of the flare event, we use multiple convolutional LSTMs, resulting in a relatively lightweight model. Our model can successfully detect flares for their approximate duration using only image data, which is a novel approach at an unexplored problem in the field.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86031
DOI: 10.6342/NTU202204087
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2022-09-30
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
U0001-2609202213554500.pdf1.07 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved