Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86031
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊永裕(Yung-Yu Chuang)
dc.contributor.authorNikita Mikhaylovich Galaydaen
dc.contributor.author黎軒喬zh_TW
dc.date.accessioned2023-03-19T23:33:38Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-28
dc.identifier.citation[1] The Impact of Flares. https://hesperia.gsfc.nasa.gov/rhessi3/mission/science/the-impact-of-flares/index.html. Accessed September 4, 2022. [2] Ali K Abed, Rami Qahwaji, and Ahmed Abed. The automated prediction of solar flares from sdo images using deep learning. Advances in Space Research, 67(8):2544–2557, 2021. [3] AK Aniyan and Kshitij Thorat. Classifying radio galaxies with the convolutional neural network. The Astrophysical Journal Supplement Series, 230(2):20, 2017. [4] John A Armstrong and Lyndsay Fletcher. Fast solar image classification using deep learning and its importance for automation in solar physics. Solar Physics, 294(6):1–23, 2019. [5] Ji-Hye Baek, Sujin Kim, Seonghwan Choi, Jongyeob Park, Jihun Kim, Wonkeun Jo, and Dongil Kim. Solar event detection using deep-learning-based object detection methods. Solar Physics, 296(11):1–15, 2021. [6] Yang Chen, Ward B Manchester, Alfred O Hero, Gabor Toth, Benoit DuFumier, Tian Zhou, Xiantong Wang, Haonan Zhu, Zeyu Sun, and Tamas I Gombosi. Identifying solar flare precursors using time series of sdo/hmi images and sharp parameters. Space Weather, 17(10):1404–1426, 2019. [7] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, and Yinhai Wang. Deep bidirectional and unidirectional lstm recurrent neural network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143, 2018. [8] Richard Galvez, David F Fouhey, Meng Jin, Alexandre Szenicer, Andrés Muñoz-Jaramillo, Mark CM Cheung, Paul J Wright, Monica G Bobra, Yang Liu, James Mason, et al. A machine-learning data set prepared from the nasa solar dynamics observatory mission. The Astrophysical Journal Supplement Series, 242(1):7, 2019. [9] N Hurlburt, M Cheung, C Schrijver, L Chang, S Freeland, S Green, C Heck, A Jaffey, A Kobashi, D Schiff, et al. Heliophysics event knowledgebase for the solar dynamics observatory (sdo) and beyond. In The Solar Dynamics Observatory, pages 67–78. Springer, 2010. [10] Eric Jonas, Monica Bobra, Vaishaal Shankar, J Todd Hoeksema, and Benjamin Recht. Flare prediction using photospheric and coronal image data. Solar Physics, 293(3):1–22, 2018. [11] Seongchan Kim, Seungkyun Hong, Minsu Joh, and Sa-kwang Song. Deeprain: Convlstm network for precipitation prediction using multichannel radar data. arXiv preprint arXiv:1711.02316, 2017. [12] Ahmet Kucuk, Berkay Aydin, and Rafal Angryk. Multi-wavelength solar event detection using faster r-cnn. In 2017 IEEE International Conference on Big Data (Big Data), pages 2552–2558. IEEE, 2017. [13] James R Lemen, David J Akin, Paul F Boerner, Catherine Chou, Jerry F Drake, Dexter W Duncan, Christopher G Edwards, Frank M Friedlaender, Gary F Heyman, Neal E Hurlburt, et al. The atmospheric imaging assembly (aia) on the solar dynamics observatory (sdo). In The solar dynamics observatory, pages 17–40. Springer, 2011. [14] Hao Liu, Chang Liu, Jason TL Wang, and Haimin Wang. Predicting solar flares using a long short-term memory network. The Astrophysical Journal, 877(2):121, 2019. [15] Šimon Mackovjak, Martin Harman, Viera Maslej-Krešňáková, and Peter Butka. Scss-net: solar corona structures segmentation by deep learning. Monthly Notices of the Royal Astronomical Society, 508(3):3111–3124, 2021. [16] W Dean Pesnell, B J Thompson, and PC Chamberlin. The solar dynamics observatory (sdo). In The solar dynamics observatory, pages 3–15. Springer, 2011. [17] Ming Qu, Frank Y Shih, Ju Jing, and Haimin Wang. Automatic solar flare detection using mlp, rbf, and svm. Solar Physics, 217(1):157–172, 2003. [18] Jeffrey W Reep and Will T Barnes. Forecasting the remaining duration of an ongoing solar flare. Space Weather, 19(10):e2021SW002754, 2021. [19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards realtime object detection with region proposal networks. Advances in neural information processing systems, 28, 2015. [20] Philip Hanby Scherrer, Jesper Schou, RI Bush, AG Kosovichev, RS Bogart, JT Hoeksema, Y Liu, TL Duvall, J Zhao, CJ Schrijver, et al. The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (sdo). Solar Physics, 275(1):207–227, 2012. [21] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28, 2015. [22] Shashwat Singh, Ankul Prajapati, and Kamlesh N Pathak. Predicting future astronomical events using deep learning. arXiv preprint arXiv:2012.15476, 2020. [23] Shahroz Tariq, Sangyup Lee, and Simon S Woo. A convolutional lstm based residual network for deepfake video detection. arXiv preprint arXiv:2009.07480, 2020. [24] The SunPy Community, Will T. Barnes, Monica G. Bobra, Steven D. Christe, Nabil Freij, Laura A. Hayes, Jack Ireland, Stuart Mumford, David Perez-Suarez, Daniel F. Ryan, Albert Y. Shih, Prateek Chanda, Kolja Glogowski, Russell Hewett, V. Keith Hughitt, Andrew Hill, Kaustubh Hiware, Andrew Inglis, Michael S. F. Kirk, Sudarshan Konge, James Paul Mason, Shane Anthony Maloney, Sophie A. Murray, Asish Panda, Jongyeob Park, Tiago M. D. Pereira, Kevin Reardon, Sabrina Savage, Brigitta M. Sipőcz, David Stansby, Yash Jain, Garrison Taylor, Tannmay Yadav, Rajul, and Trung Kien Dang. The sunpy project: Open source development and status of the version 1.0 core package. The Astrophysical Journal, 890:68–, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86031-
dc.description.abstract太陽閃焰對於地球有著深遠影響,因此一直是研究人員關注的焦點之一。目前已有許多關於太陽閃焰的預測以及偵測的相關研究,但是在檢測閃焰的整個持續時間仍然有待探索。在這項研究中,我們提出了一種用於在極紫外線範圍內的圖像上使用雙向 LSTM 在整個持續時間內偵測、分類和提取太陽閃焰區域的自動系統。與當前的許多研究不同,我們在短時間內使用圖像來訓練我們的網路。此外,我們也提出了一種自定義的資料集生成方法,該方法能夠在閃焰期間創建全太陽圖像序列,特別是閃焰區域。為了利用耀斑事件的時間和空間訊息,我們使用多個卷積 LSTM,從而得到一個相對輕量級的模型。我們的模型在僅使用圖像資料的持續時間的條件下,可以成功檢測閃焰的近似值,這是在該領域針對未探索問題的一種新穎方法在該領域。zh_TW
dc.description.abstractSolar flares have been one of the focal interests among researchers, as they have a profound effect on Earth. Both prediction and detection of solar flares are well studied topics in the field, however detecting the full duration of a flare has yet to be explored. In this research, we propose an automatic system for detection, classification, and extraction of solar flare regions for their entire duration using bidirectional LSTMs on images in the Extreme Ultra Violet range. Unlike numerous current research, we use images within a short time window to train our network. Moreover, a custom dataset generation method has also been proposed, which is able to create sequences of images of the full sun during a flare, as well as flaring regions specifically. In order to exploit both the temporal and spatial information of the flare event, we use multiple convolutional LSTMs, resulting in a relatively lightweight model. Our model can successfully detect flares for their approximate duration using only image data, which is a novel approach at an unexplored problem in the field.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:33:38Z (GMT). No. of bitstreams: 1
U0001-2609202213554500.pdf: 1095999 bytes, checksum: 65b247c256c1b56881ef1b32b0e0ed37 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii Abstract v Contents vi List of Figures ix List of Tables xi Denotation xiii Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Solar Event Detection 3 2.2 Solar Flare Detection 4 2.3 Solar Flare Prediction 4 2.4 Solar Flare Duration Detection 5 Chapter 3 Data Acquisition 7 3.1 Solar Dynamics Observatory 7 3.2 SDO Images Dataset 7 3.3 Dataset Creation 8 3.3.1 Flare Data Retrieval 8 3.3.2 Flare Image Sequence Creation 9 3.3.3 Data Augmentation 10 3.3.4 Datasets 11 Chapter 4 Methods 13 4.1 Goal 13 4.2 Convolutional LSTM 13 4.3 Bidirectional Convolutional LSTM 14 4.4 Model Architecture 14 4.5 Region Extraction 15 Chapter 5 Experiments and Results 17 5.1 Validation Data 17 5.2 Evaluation Metrics 17 5.2.1 Flare Classification 17 5.2.2 Flare start and end prediction 18 5.3 Results 19 Chapter 6 Conclusion 25 References 27 Appendix A — Additional Data 31 A.1 Flare data retrieved from HEK 31 A.2 Raw Confusion Matrices 33 A.3 A demonstration video 35 Appendix B — Formulas 37 B.1 Evaluation Metric Formulas 37
dc.language.isoen
dc.subject多類分類zh_TW
dc.subject雙向卷積長短期記憶網路zh_TW
dc.subject耀斑zh_TW
dc.subject全持續時間zh_TW
dc.subjectBidirectional Convolutional LSTMen
dc.subjectMulti Class Classificationen
dc.subjectFull Durationen
dc.subjectSolar Flareen
dc.title使用雙向卷積長短期記憶網路的全持續時間閃焰檢測、分類和區域提取zh_TW
dc.titleFull Duration Flare Detection, Classification and Region Extraction using Bidirectional Convolutional LSTMsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉正聖(Jeng-Sheng Yeh),吳賦哲(Fu-Che Wu)
dc.subject.keyword雙向卷積長短期記憶網路,耀斑,全持續時間,多類分類,zh_TW
dc.subject.keywordBidirectional Convolutional LSTM,Solar Flare,Full Duration,Multi Class Classification,en
dc.relation.page37
dc.identifier.doi10.6342/NTU202204087
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2609202213554500.pdf1.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved