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Abstract

Solar flares have been one of the focal interests among researchers, as they have a

profound effect on Earth. Both prediction and detection of solar flares are well studied

topics in the field, however detecting the full duration of a flare has yet to be explored. In

this research, we propose an automatic system for detection, classification, and extraction

of solar flare regions for their entire duration using bidirectional LSTMs on images in the

Extreme Ultra Violet range. Unlike numerous current research, we use images within a

short time window to train our network. Moreover, a custom dataset generation method

has also been proposed, which is able to create sequences of images of the full sun during

a flare, as well as flaring regions specifically. In order to exploit both the temporal and

spatial information of the flare event, we use multiple convolutional LSTMs, resulting in

a relatively lightweight model. Our model can successfully detect flares for their approxi-

mate duration using only image data, which is a novel approach at an unexplored problem

in the field.
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Chapter 1 Introduction

Solar flares have been extensively researched by the scientific community not only

to study their nature, but also to analyse their potential impact on Earth. Prediction of

solar flares within a specific time window is a continually explored problem that has had

improved results over the last decade, especially with the introduction of novel machine

learning methods. The massive amounts of solar data that has been gathered up to to-

day provides vast opportunities when used in junction with the data demanding machine

learning algorithms, and the work on solar flares is one of such opportunities.

Although there has been substantial focus on the study of solar flares, the researches

are limited in their nature. Most studies deal with detecting solar flares at Active Regions

of the sun, and work within a lengthy time period, usually 24 hours. Moreover, despite the

fact that solar flare prediction is a well studied topic, there has been little to no research in

regards of determining the full duration of flares. In this research, we tackle the issue of

detecting, classifying and determining the full duration of flares.

Solar flares are sudden outbursts of magnetic energy from the solar corona whichmay

be classified into the categories A, B, C, M, and X, in ascending magnitude where class

X solar flares are the most powerful. While flares of classes A, B, and C are relatively

harmless to the Earth, the other two classes may have the potential to disturb the the Earth’s
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ionosphere, which can cause disruptions in the radio communications [1]. Therefore, it is

imperative that methods for predicting solar flares are developed. In the recent years, there

have been multiple researches aiming to predict whether or not a solar flare will occur in

some time window. It has been demonstrated that CNN models which process image data

of the sun can be useful in that task [2]. Besides using computer vision models, LSTM

models, which use magnetic parameters without any image data, were also able to produce

favorable results [14].

Due to the lack of research in this niche, there are no readily available datasets. There-

fore, we created our own pipeline and dataset design fit for our task. We use the Machine

Learning Dataset Prepared From the NASA Solar Dynamics Observatory Mission [8] as

the source of the imaging data, and the Python package SunPy [24] for the queries of the

flaring events. By combining the two, we were able to create a dataset comprising of im-

age sequences prior to and during the flares from years 2010 to 2018. Since solar flares

greatly change throughout their flaring period, there is a plethora of not only visual, but

also temporal information to be exploited. Hence, our approach uses Bidirectional Con-

volutional LSTMs, which make use of both the spatial and temporal information when

analysing image sequences.

2
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Chapter 2 Related Work

2.1 Solar Event Detection

Awide range of methodologies have been proposed for using machine learning mod-

els for solar event detection. Models such as Faster R-CNN, which produce great results

on the PASCAL VOC 2007 dataset [19], has been used to detect solar events [12]. Arm-

strong et al. [4] created a model similar to the VGG19 in order to classify solar images

in the Hα belonging to the classes Quiet, Prominence, Filament, Sunspot, or Flare rib-

bon. They achieved excellent results, and demonstrated that CNNs are highly useful in

the classification of solar image data.

Baek et al. [5] used a custom labeled dataset to detect coronal holes, sunspots and

prominences on the surface of the sun. The authors utilized Faster RCNN and SSDmodels

in junction wiht the ResNet 101 for feature extraction to perform the detection task. Since

solar data is far too different from the Imagenet dataset that these models were trained on

originally, the authors trained them from scratch, unable to benefit from transfer learning.

The study reached favorable results for the detection of the three classes, showing the

potential of using CNNs in solar event detection.

The task of solar event detection has also been approached by segmentation. Mackov-

3
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jak et al. [15] developed a U-Net inspired Solar Corona Structures Segmentation Network

(SCSS-Net) [15] which segments the coronal holes and active regions of the sun. Similar

to a U-Net, the authors used Convolution and Deconvolution blocks to output probabilities

of each pixel belonging to a specific class [15].

2.2 Solar Flare Detection

Early studies tackling solar flare detection used multi-layer perceptrons, radial basis

functions, and support vector machines with carefully constructed features and human

selected datasets [17]. Although they reach high accuracy rates, they were limited in their

applicability due to the amount of hand crafted features necessary for the model. For the

past decade, the focus has shifted from solar flare detection, to flare prediction, which is

a useful tool used in order to prepare for the potential impacts of the flares.

2.3 Solar Flare Prediction

When it comes to solar flare prediction, a range of machine learning models have

been applied. Jonas et al. [10] proposed using combinations of different types features to

predict solar flares. The authors combined physical features of the active regions, such

as total unsigned current helicity, flare history of the region, as well as HMI and AIA

images. The study experimented predicting solar flares within a 2 and 24 hour windows

using different combinations of the aforementioned features. A linear classifier was used,

which yielded True Skill Scores (TSS) of above 0.8, similar to previous studies.

Abed et al. [2] proposed an automatic approach to predicting whether or not a solar

4
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flare will occur within 24 hours. The created a system to automatically detect Sunspots

and Active Regions of the sun by using HMI Intensitygram and Magnetogram images

respectively. After the detection, the two groups are combined and fed through a Neural

Network, where Sunspots in the Active Regions are detected and bounded boxes for them

created. These groups of Sunspots are then processed by a CNN to determine whether or

not they will produce a flare of class C or higher. This approach produced great results,

with the maximum accuracy being 90

2.4 Solar Flare Duration Detection

Research on the durations of solar flares is scarce. Reep et al. [18] studied prediction

of the remaining duration of an ongoing flare. The authors use the light curves and their

flux values up to a certain point, and predict how long the flare will last. The study defines

5 time points of a flare’s lifetime namely, t0, t1, t2, t3, and t4, where t0 is the start of the

flare, t1 is when the light curve derivative is at its maximum, t2 is the peak of the flare, t3

is when the light curve derivative is at its minimum, and t4 is when the derivative returns

to zero. The authors then train a random forest regression model to predict t4 (end of

the flare) from either t2 (peak of the flare) or t3 (downward slope), producing predictions

within 2 minutes of the true end of the solar flare.

As far as we know, there has been no research concerning the use of CNN or LSTM

models in regards to determining the duration of solar flares.

5
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Chapter 3 Data Acquisition

3.1 Solar Dynamics Observatory

Many of the studies concerning solar flare prediction and/or detection, including ours,

make use of the image data from the NASA’s Solar Dynamics Observatory (SDO). The

SDO collects data about the magnetic fields of the sun in multiple by orbiting a space-

craft around the star. SDO consists of three main research instruments, the Atmospheric

Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and Helio-

seismic andMagnetic Imager (HMI)), which, besides other data, all produce image data of

the sun in different wavelength bands, allowing it to capture a range of phenomena [16].

Our study uses images in the wavelengths of

Since our study focuses on flares, we chose to use the images from the 94Å channel

of the AIA, which primarily observe the ions of the flaring corona [13]. Moreover, we use

the images from the HMI instrument which focuses on Sunspots and Active Regions [20].

3.2 SDO Images Dataset

Since the data produced by the SDO is not properly processed for direct use in ma-

chine learning, we use the ”Machine Learning Dataset Prepared From the NASA Solar

7
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Dynamics Observatory Mission” dataset created by Galvez et al. which applies correc-

tions, downsamples, and temporally and spatially synchronizes the data produced by the

SDO, resulting in a dataset of image data for each wavelength of the SDO observations [8].

3.3 Dataset Creation

3.3.1 Flare Data Retrieval

Since there is no readily available dataset for determining the full duration of solar

flares, one was created for the purpose of this study. As shown in Figure 3.1, in order

to find the information on the flares, we utilized a Python SunPy [24] package to query

the HEK (Heliophysics Event Knowledgebase) [9] for flares starting from year 2010 and

ending in 2018, in order to only include the flares for which images can be found in the

MLDSDO. The query returns numerous data points, a subset of which was kept. Notably,

event start time, event end time, flare class, and flare coordinates were retained. A full

list of the flare data points that were preserved, and their explanaions, can be found in

the Appendix A. After the query, the results with errors and duplicates were filtered out,

leaving 6257 C class, 638 M class, and 38 X class flares. Additionally, two new flare

classes were created. The N flare class was created to represent a Quiet event (no flare)

and the H flare class represents the hybrid class including N and C class flares. To create

the list of N flares, the list of C-class flares was used to shift the flare start and end times

12 hours earlier. To create the H flare list, the C and N flare lists were combined. The flare

data was saved in a CSV format to a local database, with one CSV file per flare class. The

number of each class flare event can be seen in table 3.1.

8
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Figure 3.1: Flare data query pipeline

Table 3.1: Original number of flare events

Flare class Number of events
C 6257
M 638
X 38
N 6257
H 12513

3.3.2 Flare Image Sequence Creation

With the flare lists, flare information, and the solar images from MLDSDO ready,

image sequences of flare events could be commenced. In order to allow for flexibility, we

created a pipeline which can create a sequence of N images in 94Å/1600Å/HMI wave-

lengths starting from time T and moving backwards or forward in time. Images in the

MLDSDO are provided at a 6 minute cadence, and therefore it is not likely that there will

be images exactly at time T , meaning alignment needed to take place. Moreover, there

were gaps in data where some images were missing. To overcome these obstacles, we

found closest images to the time T and moved N timesteps forward or backward in time.

9
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If an image for a given time was missing, it was skipped. AfterN timesteps, if the number

of collected images was not equal to N , the remaining gaps were filled with the collected

images. As a result, a sequence of N images is created. A visual representation of the

image sequence creation process is represented in figure 3.2.

Figure 3.2: Flare image sequence creation pipeline

3.3.3 Data Augmentation

Higher magnitude flares occur much rarer than weak ones, leaving us with a highly

imbalanced dataset. In order to combat the disproportionality of the training dataset, we

used a data augmentation inspired by Aniyan et al. [3]. Our goal was to have at least

10,000 of both full disk image, and flare cutout image sequences for each flare class. To

achieve that, for each flare event, we rotated image sequences by relative steps (≈180◦ for

C class flares,≈12◦ for M class flares and≈1◦ for X class flares) until a full 360◦ rotation

was complete. In the case of full disk image sequences, that was the end of the pipeline.

For the flare cutout image sequences, cutouts were made during each rotation of the full

10
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disk image sequence.

Figure 3.3: Single frame data augmentation visual

Table 3.2: Number of flare event image sequences after data augmentation

Flare class Sequences
C 12064
M 17431
X 14256
N 12034
H 18649

3.3.4 Datasets

With the ability to create sequences ofN images at any given time T , and to augment

images, we were able to create datasets for training of our models. We created numerous

different datasets to test which allows our model to learn the best. Table 3.3 shows the

flares included into each dataset. The Hybrid class of flares is a combination of C class

flares and Quiet activity. The cadence represents the frequency at which SDO images are

taken in minutes.

11

http://dx.doi.org/10.6342/NTU202204087


doi:10.6342/NTU202204087

Table 3.3: Flares included in our datasets

Dataset Quiet C Flares M Flares X Flares Hybrid Cadence (min.)
NCMX6 ✓ ✓ ✓ ✓ 6
NCMX12 ✓ ✓ ✓ ✓ 12
NMX6 ✓ ✓ ✓ 6
HMX6 ✓ ✓ ✓ 6
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Chapter 4 Methods

4.1 Goal

The goal of our method is when given a set of full sun MLDSDO images, automat-

ically detect, classify and determine the flares full duration. Moreover, we would like to

extract the flaring region, with the flare at the center of the frames.

4.2 Convolutional LSTM

A Convolutional LSTM is an extension of a Fully-Connected LSTM model which

uses convolution to capture spatiotemporal relationships of image sequences. In contrast

to the original LSTM cells, a ConvLSTM uses convolution on it’s inputs, allowing it to

learn spatial information.

Referencing the original research [21], a ConvLSTM can be formulated as:

13
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Where each of the variables can be seen in the ConvLSTM Cell in Figure 4.1.

Figure 4.1: A ConvLSTM Cell

4.3 Bidirectional Convolutional LSTM

A Bidirectional Convolutional LSTM is essentially the same as the normal ConvL-

STM, but the sequences are processed in both forward and backward directions. This

allows the model to learn better features, improving performance [7]. Since our research

does not focus on prediction of solar flares, we have the ability to process the flare events

after they have finished, which is where using Bidirectional ConvLSTMs can be benefi-

cial.

4.4 Model Architecture

As seen in figure 4.2, similar to other works that use ConvLSTMs [22, 23], our model

stacks multiple Bidirectional ConvLSTM cells. The original authors of the ConvLSTM

paper as well as other previous research have shown that by stacking multiple ConvL-

STMs in a model increases its complexity, allowing it to learn more elaborate dynamics,

14
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compared to non-stacked ConvLSTM models [11, 21]. The output of the stacked ConvL-

STMs is directed into an additional 2D Convolution block, which is then globally pooled

and led into a Dense layer, after which a softmax function is used for classification.

Figure 4.2: Our model architecture

4.5 Region Extraction

At the moment a solar flare occurs, it is the most intense magnetic event. We use

this fact to detect the region of sun where the flare occurs. When a flare is detected, we

use a non-maximal suppression filter on the image of the sun and find the region with the

highest intensity. A 64x64 pixel bounding box is drawn over that region to encompass the

flare.

15
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Chapter 5 Experiments and Results

5.1 Validation Data

Numerous researches dealing with solar flares use a chronological split to test their

data [2, 6]. Usually, a specific period of time is chosen as the testing period, such as one

year. In this study, we use the year 2013 (excluding August 2013) as a testing year, since

all classes (A, B, C, M, X) of solar flares occurred during that year. Hence, we do not use

any data from 2013 to train the model, and it is left for testing purposes only.

5.2 Evaluation Metrics

Since our model performs both classification and prediction, we break down the eval-

uation of our model into multiple metrics.

5.2.1 Flare Classification

Firstly, we calculate the confusion matrices for flare class classification and use them

to calculate the following evaluation metrics:

• Recall

17
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• Precision

• F1 Score

Note: The formulas for these evaluation metrics can be found in Appendix B

5.2.2 Flare start and end prediction

As mentioned before, there is no dataset which specifically aims to provide infor-

mation on full flare durations. However, the information about the start and end times of

solar flares was retrieved from the HEK. Using our model, we predict the start and end

times of the flares, and calculate the difference from the true start and end times retrieved

from HEK. The calculation of the flare start and end error can be formulated as follows:

Let our model be denoted asM , the list of downsampledMLDSDO frame differences

as F , the predicted start time of a flare as tps, the predicted end time of a flare as tpe, the

true start time of a flare as tts, and the true end time of a flare as tte.

1. M analyses a sequence of 5 images from F .

2. If a flare is detected, tps is saved.

3. The list of flares is searched for a tts closest to tps, and the difference between them

is saved.

4. M keeps iterating over F in a sliding window of width 5 until a flare is no longer

predicted, tpe is saved.

5. The list of flares is searched for a tte closest to tpe, and the difference between them

is saved.

18
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6. The process continues untilM iterates over the entirety of F .

5.3 Results

The confusion matrices for the trained models can be seen in Figure 5.1. The calcu-

lated evaluation metrics can be found in Tables 5.1 through 5.4.

19
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(d) NCMX12 Model

Figure 5.1: Confusion Matrices for the tested models of flare start detection. The repre-
sentations are scaled into a [0, 1] range. The confusion matrices with raw values can be
found in Appendix A.
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Table 5.1: Evaluations of the NMX6 model

Flare Class Precision Recall F1 Score Specificity

H 0.989 0.990 0.989 0.591

M 0.543 0.475 0.507 0.990

X 0.429 0.750 0.545 0.998

Table 5.2: Evaluations of the HMX6 model

Flare Class Precision Recall F1 Score Specificity

H 0.993 0.964 0.978 0.750

M 0.329 0.625 0.431 0.968

X 0.231 0.750 0.353 0.994

Table 5.3: Evaluations of the NCMX6 model

Flare Class Precision Recall F1 Score Specificity

N 0.867 0.775 0.819 0.887

C 0.784 0.877 0.828 0.774

M 0.625 0.375 0.469 0.994

X 0.273 0.750 0.400 0.995

Table 5.4: Evaluations of the NCMX12 model

Flare Class Precision Recall F1 Score Specificity

N 0.812 0.781 0.796 0.827

C 0.774 0.820 0.796 0.775

M 0.812 0.325 0.464 0.998

X 0.250 0.750 0.375 0.994

Since the NMX6 model performed the best relative to others, it was used for the flare

start and end detection. The average errors for the tested months of 2013 can be seen in
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table 5.5. Additionally, a link to a demonstration video showing the model analysing May

of 2013 can be found in Appendix A.

Additionally, models for classifying flare cutouts were trained. The confusion matri-

ces for these models can be found in Figure 5.2. The Evaluations can be found in Tables

5.6 and 5.7.

When comparing our models’ ability to detect ends of solar flares with Reep et

al. [18], our models’ performance is more volatile. However, there are significant dif-

ferences with the two approaches. Our model aims to detect the start of the flare as well

as the end, and only using image data. Reep et al. [18] use physical features and predict

the end of the flare only, starting from the peak of the flare.
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Figure 5.2: Confusion Matrices for the tested models of flare start detection cutouts. The
representations are scaled into a [0, 1] range. The confusion matrices with raw values can
be found in Appendix A.
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Table 5.5: Average errors for flare start and end predictions of all detected flares

Month Average flare start error Average flare end error

January 10 minutes 9 minutes 45 seconds

February 4 minutes 10 minutes

March 44 minutes 30 seconds 5 minutes 30 seconds

April 22 minutes 7 minutes 20 seconds

May 17 minutes 32 seconds 12 minutes 36 seconds
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Chapter 6 Conclusion

In this paper, we introduce a novel concept of utilizing only images to perform a

full range of tasks involving flare detection, classification, full flare duration, and region

extraction. Current research about the solar flares deals mostly with binary prediction of

whether or not a flare will occur at a specific active region. Numerous studies use large

windows of 24 hours ahead of the flare, as well as some physical features of the flares,

whereas we use only a 36 minute window of images from the Machine Learning Dataset

Prepared From the NASA Solar Dynamics Observatory Mission. Our model successfully

detects flares for their approximate duration. Although this work lays a foundation, the

current models classification could be improved. For future work, developing a model

which can combine physical features with images may be a viable direction. Moreover,

as the current work operates post-flare, a model could be developed to predict the flare,

besides classification and full duration prediction.
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Appendix A — Additional Data

A.1 Flare data retrieved from HEK
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Table A.1: Flare data retrieved from HEK

Data point Explanation
event_starttime Time when event starts
event_endtime Time when event ends
fl_goescls GOES Flare class
hpc_coord
hpc_bbox
hrc_coord
hrc_bbox
hgc_coord
hgc_bbox
event_coordsys Coordinate system type
hgs_coord
hgs_bbox
event_peaktime Peak time of a flare
active
ar_noaaclass Active Regon NOAA class
ar_noaanum NOAA designated Active Region Number
boundbox_c1ur Coord1 of upper-right corner of bounding

box
boundbox_c2ur Coord2 of upper-right corner of bounding

box
boundbox_c1ll Coord1 of lower-left corner of bounding box
boundbox_c2ll Coord2 of lower-left corner of bounding box
hpc_y
hpc_x
hgs_y
hgs_x
hpc_radius
event_c2error Uncertainty in Coord2 of the mean location

of the event.

Note: Definitions taken from the official Heliophysics Events Knowl-
edgebase [9] website, https://www.lmsal.com/hek/VOEvent_
Spec.html
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A.2 Raw Confusion Matrices
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A.3 A demonstration video

https://www.youtube.com/watch?v=fH44huGPk-g
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Appendix B — Formulas

B.1 Evaluation Metric Formulas

Precision

TP

TP + FP

Recall

TP

TP + FN

F1 Score

TP

TP + 1
2
(FP + FN)
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