Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85608| Title: | 實二次域上的p進L函數的模符號構造 Modular Symbols Construction of the p-adic L-functions over Real Quadratic Fields |
| Authors: | Zhi-Lin Zhang 張誌麟 |
| Advisor: | 謝銘倫(Ming-Lun Hsieh) |
| Keyword: | L-函數,p-進,模符號,實二次域,艾森斯坦級數, L-function,p-adic,modular symbom,real quadratic field,Eisenstein series, |
| Publication Year : | 2022 |
| Degree: | 碩士 |
| Abstract: | 在 [DD06] 中,作者給出了在 Qp2-{(0,0)} 上的一個p進測度來定義Λ進艾森斯坦模符號,並當p是慣性於F時,通過計算Λ進艾森斯坦模符號在附加於理想類群的閉鏈上的值來構造實二次域F上的p進L函數。我們將此結果推廣到p是分裂於F的情況,並藉由計算艾森斯坦級數的周期積分來獲得p進L函數的插值公式。 In [DD06], the authors proposed a family of p-adic measures on Qp2-{(0,0)} to define the Λ-adic Eisenstein modular symbol, and constructed the p-adic L-function for a real quadratic field F by evaluating the Λ-adic Eisenstein modular symbol at cycles attached to ideal classes of F for p inert in F. We generalize this result to include the case that p is split in F, and to provide explicit interpolation formulae of the p-adic L-function for F by evaluating explicitly the period integral of Eisenstein series over real quadratic fields. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85608 |
| DOI: | 10.6342/NTU202201144 |
| Fulltext Rights: | 同意授權(全球公開) |
| metadata.dc.date.embargo-lift: | 2022-07-05 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2706202215052000.pdf | 1.02 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
