Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85608
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝銘倫(Ming-Lun Hsieh)
dc.contributor.authorZhi-Lin Zhangen
dc.contributor.author張誌麟zh_TW
dc.date.accessioned2023-03-19T23:19:37Z-
dc.date.copyright2022-07-05
dc.date.issued2022
dc.date.submitted2022-06-29
dc.identifier.citation[Bar78] Daniel Barsky. Fonctions zeta p-adiques d’une classe de rayon des corps denombres totalement réels. In Groupe d’Etude d’Analyse Ultramétrique (5e année: 1977/78), pages Exp. No. 16, 23. Secrétariat Math., Paris, 1978. [BKL18] Alexander Beilinson, Guido Kings, and Andrey Levin. Topological poly-logarithms and p-adic interpolation of L-values of totally real fields. Math.Ann., 371(3-4):1449–1495, 2018. [Bum97] Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. [Cas73] William Casselman. On some results of Atkin and Lehner. Math. Ann., 201:301–314, 1973. [CD14] Pierre Charollois and Samit Dasgupta. Integral Eisenstein cocycles on GLn, I: Sczech’s cocycle and p-adic L-functions of totally real fields. Camb. J. Math., 2(1):49–90, 2014. [CN79] Pierrette Cassou-Noguès. Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math., 51(1):29–59, 1979. [DD06] Henri Darmon and Samit Dasgupta. Elliptic units for real quadratic fields. Annals of mathematics, pages 301–346, 2006. [Dix03] A. C. Dixon. Summation of a certain Series. Proc. Lond. Math. Soc., 35:284–289, 1903. [DK] Samit Dasgupta and Mahesh Kakde. Brumer-stark units and hilbert’s 12th problem. https://arxiv.org/abs/2103.02516. [DR80] Pierre Deligne and Kenneth A. Ribet. Values of abelian L-functions at negative integers over totally real fields. Invent. Math., 59(3):227–286, 1980. [Hsi12] Ming-Lun Hsieh. On the non-vanishing of Hecke L-values modulo p. Amer. J. Math., 134(6):1503–1539, 2012. [HY21] Ming-Lun Hsieh and Shunsuke Yamana. Restriction of eisenstein series and stark–heegner points. Journal de Théorie des Nombres de Bordeaux, 33(3):887–944, 2021. [Kit94] Koji Kitagawa. On standard p-adic L-functions of families of elliptic cusp forms. In p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), volume 165 of Contemp. Math., pages 81–110. Amer. Math. Soc., Providence, RI, 1994. [KL06] Andrew Knightly and Charles Li. Traces of Hecke operators, volume 133 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. [Spi14] Michael Spiess. Shintani cocycles and the order of vanishing of p-adic Hecke L-series at s = 0. Math. Ann., 359(1-2):239–265, 2014. 45.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85608-
dc.description.abstract在 [DD06] 中,作者給出了在 Qp2-{(0,0)} 上的一個p進測度來定義Λ進艾森斯坦模符號,並當p是慣性於F時,通過計算Λ進艾森斯坦模符號在附加於理想類群的閉鏈上的值來構造實二次域F上的p進L函數。我們將此結果推廣到p是分裂於F的情況,並藉由計算艾森斯坦級數的周期積分來獲得p進L函數的插值公式。zh_TW
dc.description.abstractIn [DD06], the authors proposed a family of p-adic measures on Qp2-{(0,0)} to define the Λ-adic Eisenstein modular symbol, and constructed the p-adic L-function for a real quadratic field F by evaluating the Λ-adic Eisenstein modular symbol at cycles attached to ideal classes of F for p inert in F. We generalize this result to include the case that p is split in F, and to provide explicit interpolation formulae of the p-adic L-function for F by evaluating explicitly the period integral of Eisenstein series over real quadratic fields.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:19:37Z (GMT). No. of bitstreams: 1
U0001-2706202215052000.pdf: 1046232 bytes, checksum: f2107bb1089fb87e797b40144cbf22df (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents Acknowledgements i Abstract ii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Automorphic Forms and Modular Forms . . . . . . . . . . . . . . . . 7 1.4 Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Period Integral of Eisenstein series 11 2.1 Period integral as a Product of Local Tate Integrals . . . . . . . . . . 11 2.2 Computation of Local Integrals . . . . . . . . . . . . . . . . . . . . . 13 3 Modular Symbol of Eisenstein Series 22 3.1 The Modified Eisenstein Series . . . . . . . . . . . . . . . . . . . . . 22 3.2 Partial Modular Symbols and p-adic Measures . . . . . . . . . . . . . 28 3.3 Period Integral as a Linear Combination of Complex Modular Symbols 31 4 p-adic L-function for Real Quadratic Field 35 4.1 Integration on Xp as a p-adic Modular Symbol . . . . . . . . . . . . . 35 4.2 Construction of the p-adic L-functions . . . . . . . . . . . . . . . . . 41 iii
dc.language.isoen
dc.subject實二次域zh_TW
dc.subject模符號zh_TW
dc.subjectp-進zh_TW
dc.subjectL-函數zh_TW
dc.subject實二次域zh_TW
dc.subject艾森斯坦級數zh_TW
dc.subject模符號zh_TW
dc.subjectp-進zh_TW
dc.subjectL-函數zh_TW
dc.subject艾森斯坦級數zh_TW
dc.subjectp-adicen
dc.subjectL-functionen
dc.subjectmodular symbomen
dc.subjectreal quadratic fielden
dc.subjectEisenstein seriesen
dc.subjectL-functionen
dc.subjectp-adicen
dc.subjectmodular symbomen
dc.subjectreal quadratic fielden
dc.subjectEisenstein seriesen
dc.title實二次域上的p進L函數的模符號構造zh_TW
dc.titleModular Symbols Construction of the p-adic L-functions over Real Quadratic Fieldsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊一帆(Yi-Fan Yang),陳其誠(Ki-Seng Tan)
dc.subject.keywordL-函數,p-進,模符號,實二次域,艾森斯坦級數,zh_TW
dc.subject.keywordL-function,p-adic,modular symbom,real quadratic field,Eisenstein series,en
dc.relation.page45
dc.identifier.doi10.6342/NTU202201144
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
dc.date.embargo-lift2022-07-05-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
U0001-2706202215052000.pdf1.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved