Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85451| Title: | 基於羅森-歐斯曼錐構造的均曲流自相似解 Self-similar solutions to the mean curvature flow based on the Lawson-Osserman cone |
| Authors: | Chen-Kuan Lee 李宸寬 |
| Advisor: | 蔡忠潤(Chung-Jun Tsai) |
| Keyword: | 幾何分析,高餘維均曲流,自相似解,羅森-歐斯曼錐,狄利克雷問題, Geometric Analysis,Mean Curvature Flow in Higher Codimensions,Self-Similar Solution,Lawson-Osserman Cone,Dirichlet Problem, |
| Publication Year : | 2022 |
| Degree: | 碩士 |
| Abstract: | 在這篇論文中,我們首先得到基於羅森-歐斯曼錐構造的均曲流自相似解必須滿足的等式,並證明了自擴張解的存在性。主要的關鍵是利用羅森-歐斯曼錐的對稱性將偏微分方程轉化為常微分方程組,並研究這種近似於自治系統的常微分方程組。特別地,我們發現從狄利克雷問題的觀點來看,我們構造的自擴張解具唯一性。 In this thesis, we derived the equation of self-similar solutions to mean curvature flow based on the Lawson-Osserman cone and proved the existence of self-expander. The main point is to use the symmetry to transform the PDE into a system of ODEs and analyze such analogous autonomous system. In particular, the self-expander is unique form the viewpoint of Dirichlet problem. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85451 |
| DOI: | 10.6342/NTU202200888 |
| Fulltext Rights: | 同意授權(全球公開) |
| metadata.dc.date.embargo-lift: | 2022-07-22 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0806202210173900.pdf | 1.33 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
