Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84927
Title: 基於注意力的問答檢索與醫學實體識別模型之互動式健康照護機器人
Interactive Healthcare Robot using Attention-based Question-Answer Retrieval and Medical Entity Extraction Models
Authors: Yu-Hsuan Chang
張鈺萱
Advisor: 傅立成(Li-Chen Fu)
Keyword: 人機互動,問答系統,醫學實體識別,深度學習,
Human-Robot Interaction,Question Answering,Medical Entity Extraction,Deep Learning,
Publication Year : 2022
Degree: 碩士
Abstract: 在醫療機構中,回答病患與陪病者關於疾病的問題被視為一個很重要的任務。而在現今醫療人力短缺與護病比增加的情況下,醫護人員可以為每位病患回答問題的時間也越來越少。然而,有研究顯示,正確的健康教育信息能積極改善患者的知識、態度和行為,因此,透過問答的方式將正確的健康照護資訊傳遞至關重要。本論文使用醫療院所提供的問答集,設計了一個兼顧效率與準確性的健康照護問答系統。 大多數現有方法在檢索階段時常會著重在詞彙匹配,未能關注醫學領域中的關鍵實體。在本論文中,我們開發了一個使用多個基於注意力機制模型來回答健康照護相關疑問的人機互動問答系統。基於注意力機制的Transformer模型將使用者的問題分別進行語義編碼和抽取醫學實體。系統會結合這兩個特徵到我們設計的融合模組中,與健康照護問答及進行比對,最後即時地提供使用者最準確的回覆。透過與使用者互動的歷史紀錄中提取的醫學實體資訊,本系統還會推薦相關的健康照護知識給使用者,以增強使用者與機器人系統之間的互動性,這有別於以往只針對使用者問題回覆的系統。
In healthcare facilities, answering the questions from the patients and their companions about the health problems is regarded as an essential task. With the current shortage of medical personnel resources and an increase in the nurse-to-patient ratio, staff in the medical field have consequently devoted less time to answering questions for each patient. However, studies have shown that correct healthcare information can positively improve patients' knowledge, attitudes, and behaviors. Therefore, delivering correct healthcare knowledge through a question answering system is crucial. This thesis focuses on designing an efficient and accurate healthcare question answering system, utilizing the special question-and-answer knowledge set provided by healthcare facilities as well as sources from the general web. Most existing works heavily rely on query’s lexical matches at the retrieval stage but fail to focus on the critical entities in the medical field from the query. In this thesis, we develop a healthcare question answering system that uses attention-based models to answer healthcare-related questions. Attention-based transformer models are utilized to efficiently encode semantic meanings and extract the medical entities inside the user query individually. These two features are integrated through our designed fusion module to match against the pre-collected healthcare knowledge set, so that our system will finally give the most accurate response to the user in real-time. By incorporating the extracted medical entities from the historical records of users’ entities of questions, the system will also recommend the relevant healthcare knowledge to augment the interaction between users and the question-answering robot system, which is different from the previous systems using traditional approaches that only give users replies to the specific questions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84927
DOI: 10.6342/NTU202202701
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-08-12
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
U0001-2308202215121100.pdf
Access limited in NTU ip range
3.18 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved