請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84927完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Yu-Hsuan Chang | en |
| dc.contributor.author | 張鈺萱 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:33:10Z | - |
| dc.date.copyright | 2022-08-31 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-24 | |
| dc.identifier.citation | REFERENCE [1] N. D. Council. 'Trends in the proportion of the elderly population.' https://pop-proj.ndc.gov.tw/chart.aspx?c=10&uid=66&pid=60 (accessed June 25, 2022). [2] D. Shen, G. Wu, and H.-I. Suk, 'Deep learning in medical image analysis,' Annual review of biomedical engineering, vol. 19, pp. 221-248, 2017. [3] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi, 'Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis,' IEEE journal of biomedical and health informatics, vol. 22, no. 5, pp. 1589-1604, 2017. [4] C. Tien, H. Lai, W. Hsu, Y. Peng, and R. Lee, 'The effects of patient education on oral care cognition, health belief and self-efficacy in head and neck cancer patients,' Journal of Evidence-Based Nursing, vol. 3, no. 3, pp. 215-224, 2007. [5] S. P. S. Chawla, S. Kaur, A. Bharti, R. Garg, M. Kaur, D. Soin, A. Ghosh, and R. Pal, 'Impact of health education on knowledge, attitude, practices and glycemic control in type 2 diabetes mellitus,' Journal of family medicine and primary care, vol. 8, no. 1, p. 261, 2019. [6] L. H. Aiken, D. M. Sloane, L. Bruyneel, K. Van den Heede, P. Griffiths, R. Busse, M. Diomidous, J. Kinnunen, M. Kózka, and E. Lesaffre, 'Nurse staffing and education and hospital mortality in nine European countries: a retrospective observational study,' The lancet, vol. 383, no. 9931, pp. 1824-1830, 2014. [7] N. H. I. Administration. 'Average daily nurse-to-patient ratio.' https://www.nhi.gov.tw/Content_List.aspx?n=4037A32CDEF1DDCF&topn=23C660CAACAA159D (accessed June 25, 2022). [8] T. Nadarzynski, O. Miles, A. Cowie, and D. Ridge, 'Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study,' Digital health, vol. 5, p. 2055207619871808, 2019. [9] Y. Mass, B. Carmeli, H. Roitman, and D. Konopnicki, 'Unsupervised FAQ retrieval with question generation and BERT,' in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 807-812. [10] V. Lopez, V. Uren, E. Motta, and M. Pasin, 'AquaLog: An ontology-driven question answering system for organizational semantic intranets,' Journal of Web Semantics, vol. 5, no. 2, pp. 72-105, 2007. [11] P. Lewis, Y. Wu, L. Liu, P. Minervini, H. Küttler, A. Piktus, P. Stenetorp, and S. Riedel, 'Paq: 65 million probably-asked questions and what you can do with them,' Transactions of the Association for Computational Linguistics, vol. 9, pp. 1098-1115, 2021. [12] S. Robertson and H. Zaragoza, 'The probabilistic relevance framework: BM25 and beyond,' Foundations and Trends® in Information Retrieval, vol. 3, no. 4, pp. 333-389, 2009. [13] M. Surdeanu, M. Ciaramita, and H. Zaragoza, 'Learning to rank answers on large online QA collections,' in proceedings of ACL-08: HLT, 2008, pp. 719-727. [14] D. Carmel, A. Mejer, Y. Pinter, and I. Szpektor, 'Improving term weighting for community question answering search using syntactic analysis,' in Proceedings of the 23rd acm international conference on conference on information and knowledge management, 2014, pp. 351-360. [15] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon, 'Adapting ranking SVM to document retrieval,' in Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, 2006, pp. 186-193. [16] A. Figueroa and G. Neumann, 'Learning to rank effective paraphrases from query logs for community question answering,' in Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013. [17] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, 'A convolutional neural network for modelling sentences,' arXiv preprint arXiv:1404.2188, 2014. [18] M. Tan, C. d. Santos, B. Xiang, and B. Zhou, 'Lstm-based deep learning models for non-factoid answer selection,' arXiv preprint arXiv:1511.04108, 2015. [19] S. Gupta and V. R. Carvalho, 'FAQ retrieval using attentive matching,' in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 929-932. [20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, 'Bert: Pre-training of deep bidirectional transformers for language understanding,' arXiv preprint arXiv:1810.04805, 2018. [21] W. Sakata, T. Shibata, R. Tanaka, and S. Kurohashi, 'FAQ retrieval using query-question similarity and BERT-based query-answer relevance,' in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 1113-1116. [22] K. Shinzato, T. Shibata, D. Kawahara, and S. Kurohashi, 'Tsubaki: An open search engine infrastructure for developing information access methodology,' Journal of information processing, vol. 20, no. 1, pp. 216-227, 2012. [23] L. Liu, Q. Wu, and G. Chen, 'Improving Dense FAQ Retrieval with Synthetic Training,' in 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), 2021: IEEE, pp. 304-308. [24] X. Du, J. Shao, and C. Cardie, 'Learning to ask: Neural question generation for reading comprehension,' arXiv preprint arXiv:1705.00106, 2017. [25] D. Liang, P. Xu, S. Shakeri, C. N. d. Santos, R. Nallapati, Z. Huang, and B. Xiang, 'Embedding-based zero-shot retrieval through query generation,' arXiv preprint arXiv:2009.10270, 2020. [26] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, 'Improving language understanding by generative pre-training,' 2018. [27] N. Reimers and I. Gurevych, 'Sentence-bert: Sentence embeddings using siamese bert-networks,' in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 3982-3992. [28] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, 'Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,' arXiv preprint arXiv:1910.13461, 2019. [29] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, 'Exploring the limits of transfer learning with a unified text-to-text transformer,' J. Mach. Learn. Res., vol. 21, no. 140, pp. 1-67, 2020. [30] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, 'Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers,' Advances in Neural Information Processing Systems, vol. 33, pp. 5776-5788, 2020. [31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, 'Attention is all you need,' Advances in neural information processing systems, vol. 30, 2017. [32] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, 'Xlnet: Generalized autoregressive pretraining for language understanding,' Advances in neural information processing systems, vol. 32, 2019. [33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, 'Distributed representations of words and phrases and their compositionality,' Advances in neural information processing systems, vol. 26, 2013. [34] J. Pennington, R. Socher, and C. D. Manning, 'Glove: Global vectors for word representation,' in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532-1543. [35] A. M. Dai and Q. V. Le, 'Semi-supervised sequence learning,' Advances in neural information processing systems, vol. 28, 2015. [36] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, 'Deep Contextualized Word Representations,' New Orleans, Louisiana, jun 2018: Association for Computational Linguistics, in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227-2237, doi: 10.18653/v1/N18-1202. [37] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng, 'MS MARCO: A human generated machine reading comprehension dataset,' in CoCo@ NIPs, 2016. [38] M. Henderson, R. Al-Rfou, B. Strope, Y.-H. Sung, L. Lukács, R. Guo, S. Kumar, B. Miklos, and R. Kurzweil, 'Efficient natural language response suggestion for smart reply,' arXiv preprint arXiv:1705.00652, 2017. [39] N. Zhang, M. Chen, Z. Bi, X. Liang, L. Li, X. Shang, K. Yin, C. Tan, J. Xu, and F. Huang, 'CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark,' in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 2022, pp. 7888-7915. [40] H. Zhang, Y. Zong, B. Chang, Z. Sui, H. Zan, and K. Zhang, 'Medical entity annotation standard for medical text processing,' in Proceedings of the 19th Chinese national conference on computational linguistics, 2020, pp. 561-571. [41] O. Vinyals, M. Fortunato, and N. Jaitly, 'Pointer networks,' Advances in neural information processing systems, vol. 28, 2015. [42] J. Su. 'GlobalPointer: Handle nested and non-nested NER in a unified way.' https://kexue.fm/archives/8373 (accessed June 25, 2022). [43] J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu, 'Roformer: Enhanced transformer with rotary position embedding,' arXiv preprint arXiv:2104.09864, 2021. [44] J. Su. 'Generalizing 'softmax + cross-entropy' to multi-label classification problems.' https://kexue.fm/archives/7359 (accessed June 25, 2022). [45] I. Loshchilov and F. Hutter, 'Decoupled weight decay regularization,' arXiv preprint arXiv:1711.05101, 2017. [46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, and L. Antiga, 'Pytorch: An imperative style, high-performance deep learning library,' Advances in neural information processing systems, vol. 32, 2019. [47] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, and M. Funtowicz, 'Huggingface's transformers: State-of-the-art natural language processing,' arXiv preprint arXiv:1910.03771, 2019. [48] S. Borsci, A. Malizia, M. Schmettow, F. Van Der Velde, G. Tariverdiyeva, D. Balaji, and A. Chamberlain, 'The Chatbot usability scale: The design and pilot of a usability scale for interaction with AI-based conversational agents,' Personal and ubiquitous computing, vol. 26, no. 1, pp. 95-119, 2022. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84927 | - |
| dc.description.abstract | 在醫療機構中,回答病患與陪病者關於疾病的問題被視為一個很重要的任務。而在現今醫療人力短缺與護病比增加的情況下,醫護人員可以為每位病患回答問題的時間也越來越少。然而,有研究顯示,正確的健康教育信息能積極改善患者的知識、態度和行為,因此,透過問答的方式將正確的健康照護資訊傳遞至關重要。本論文使用醫療院所提供的問答集,設計了一個兼顧效率與準確性的健康照護問答系統。 大多數現有方法在檢索階段時常會著重在詞彙匹配,未能關注醫學領域中的關鍵實體。在本論文中,我們開發了一個使用多個基於注意力機制模型來回答健康照護相關疑問的人機互動問答系統。基於注意力機制的Transformer模型將使用者的問題分別進行語義編碼和抽取醫學實體。系統會結合這兩個特徵到我們設計的融合模組中,與健康照護問答及進行比對,最後即時地提供使用者最準確的回覆。透過與使用者互動的歷史紀錄中提取的醫學實體資訊,本系統還會推薦相關的健康照護知識給使用者,以增強使用者與機器人系統之間的互動性,這有別於以往只針對使用者問題回覆的系統。 | zh_TW |
| dc.description.abstract | In healthcare facilities, answering the questions from the patients and their companions about the health problems is regarded as an essential task. With the current shortage of medical personnel resources and an increase in the nurse-to-patient ratio, staff in the medical field have consequently devoted less time to answering questions for each patient. However, studies have shown that correct healthcare information can positively improve patients' knowledge, attitudes, and behaviors. Therefore, delivering correct healthcare knowledge through a question answering system is crucial. This thesis focuses on designing an efficient and accurate healthcare question answering system, utilizing the special question-and-answer knowledge set provided by healthcare facilities as well as sources from the general web. Most existing works heavily rely on query’s lexical matches at the retrieval stage but fail to focus on the critical entities in the medical field from the query. In this thesis, we develop a healthcare question answering system that uses attention-based models to answer healthcare-related questions. Attention-based transformer models are utilized to efficiently encode semantic meanings and extract the medical entities inside the user query individually. These two features are integrated through our designed fusion module to match against the pre-collected healthcare knowledge set, so that our system will finally give the most accurate response to the user in real-time. By incorporating the extracted medical entities from the historical records of users’ entities of questions, the system will also recommend the relevant healthcare knowledge to augment the interaction between users and the question-answering robot system, which is different from the previous systems using traditional approaches that only give users replies to the specific questions. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:33:10Z (GMT). No. of bitstreams: 1 U0001-2308202215121100.pdf: 3261130 bytes, checksum: fcab0a96e7ce63d923e14a29d86419cf (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES x Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Related Work 5 1.3.1 Question-Answer Retrieval 5 1.3.2 Question Generation 7 1.3.3 Comparison 8 1.4 Contribution 10 1.5 Thesis organization 11 Chapter 2 Preliminaries 13 2.1 Neural Networks 13 2.1.1 Basic Architecture 14 2.1.2 Activation Function 15 2.1.3 Loss Function 17 2.2 Transformers 18 2.2.1 Encoder and Decoder Stacks 20 2.2.2 Attention Mechanisms 20 2.2.3 Positional Encoding 23 2.3 Pre-training in Natural Language Processing 23 2.3.1 Language Representation Learning 24 2.3.2 Pre-training Tasks 25 Chapter 3 Methodology 27 3.1 System Overview 27 3.2 Question Generation and Filtering 30 3.3 Semantic Search 32 3.4 Medical Entity Search 35 3.4.1 Medical Entity Extraction 36 3.4.2 Medical Entity Match 40 3.5 Fusion 42 3.6 Question-Answer Re-rank 42 3.7 Integration with Interactive Healthcare Question Answering Robot System 44 3.7.1 Relevant Question-Answer Recommendation 45 3.7.2 Online Web Search 46 3.7.3 Conversation Flow 47 Chapter 4 Experiments 49 4.1 Experimental Setup 49 4.1.1 Datasets 49 4.1.2 Evaluation Metrics 51 4.1.3 Competing Methods 52 4.1.4 Implementation Details 53 4.2 Experimental Results 54 4.2.1 Question-Answer Retrieval 54 4.2.2 Question-Answer Retrieval for Cross Dataset 56 4.2.3 Ablation Study 57 4.3 User Study 59 4.3.1 Setting 60 4.3.2 Results and Discussion 64 Chapter 5 Conclusions 72 REFERENCE 74 | |
| dc.language.iso | en | |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 人機互動 | zh_TW |
| dc.subject | 問答系統 | zh_TW |
| dc.subject | 醫學實體識別 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Human-Robot Interaction | en |
| dc.subject | Question Answering | en |
| dc.subject | Medical Entity Extraction | en |
| dc.title | 基於注意力的問答檢索與醫學實體識別模型之互動式健康照護機器人 | zh_TW |
| dc.title | Interactive Healthcare Robot using Attention-based Question-Answer Retrieval and Medical Entity Extraction Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信希(Hsin-Hsi Chen),邱瀚模(Han-Mo Chiu),陳縕儂(Yun-Nung Chen),蘇木春(Mu-Chun Su) | |
| dc.subject.keyword | 人機互動,問答系統,醫學實體識別,深度學習, | zh_TW |
| dc.subject.keyword | Human-Robot Interaction,Question Answering,Medical Entity Extraction,Deep Learning, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202202701 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-12 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2308202215121100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
