Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83163
Title: 利用模擬異常進行自監督影像異常檢測及定位
Self-Supervised Image Anomaly Detection and Localization with Synthetic Anomalies
Other Titles: Self-Supervised Image Anomaly Detection and Localization with Synthetic Anomalies
Authors: 蔡旻均
Min-Chun Tsai
Advisor: 王勝德
Sheng-De Wang
Keyword: 圖像異常檢測,圖像異常定位,自監督學習,深度學習,特徵提取,
Image anomaly detection,Image anomaly localization,Self-supervised learning,Deep learning,Feature extraction,
Publication Year : 2022
Degree: 碩士
Abstract: 在圖像異常檢測的領域,異常的部分通常是少見而且無法預測的。因此,我們的目標是構建一個檢測架構,能夠在只有正常數據的情況下檢測未知的異常。在本文中,我們介紹了一個兩階段架構,其使用自監督學習來檢測和定位圖像中的異常。我們利用設計的數據增強策略來模擬真實的異常,讓模型學習區分正常數據和合成的異常數據。此外,我們比較了兩種可以結合不同層級語意特徵的方法,這兩種方法在異常檢測上都獲得了不錯的結果。無需額外的訓練資料和預訓練模型,本文提出的方法在MVTec AD 基準數據集上達到了96.4% AUROC的異常檢測分數及96.1% AUROC的異常定位分數,足以和現有的論文方法競爭。此結果展現了我們的方法在產業應用中的潛力。
In visual anomaly detection, anomalies are often rare and unpredictable. For this reason, we aim to build a detection framework that can detect unseen anomalies with only anomaly-free examples. In this paper, we introduce a two-stage framework for detecting and localizing anomalies in images using self-supervised learning. We simulate anomalies through the designed augmentation strategies, and the model learns to distinguish normal data from synthetic anomalies. In addition, we compare two methods for combining representations from different semantic levels of our network, and both of the methods obtain competitive results for defect detection. Without extra training samples and pre-trained models, the proposed approach achieves 96.4% detection AUROC and 96.1% localization AUROC on the MVTec AD benchmark, which is competitive against existing unsupervised methods. The results demonstrate the potential of our method for industrial applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83163
DOI: 10.6342/NTU202204080
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
U0001-2609202213261400.pdf
Access limited in NTU ip range
1.72 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved