Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝德zh_TW
dc.contributor.advisorSheng-De Wangen
dc.contributor.author蔡旻均zh_TW
dc.contributor.authorMin-Chun Tsaien
dc.date.accessioned2023-01-10T17:04:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationD. Dehaene, O. Frigo, S. Combrexelle, and P. Eline, “Iterative energy-based projection on a normal data manifold for anomaly localization,” in International Conference on Learning Representations, 2020.
V. Zavrtanik, M. Kristan, and D. Skoˇcaj, “Draem - a discriminatively trained reconstruction embedding for surface anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 8330–8339.
Y. Liu, C. Zhuang, and F. Lu, “Unsupervised two-stage anomaly detection,” in arXiv preprint arXiv:2103.11671, 2021.
J. Pirnay and K. Chai, “Inpainting transformer for anomaly detection,” in International Conference on Image Analysis and Processing, Springer, 2022, pp. 394–406.
V. Zavrtanik, M. Kristan, and D. Skoˇcaj, “Reconstruction by inpainting for visual anomaly detection,” in Pattern Recognition, vol. 112, p. 107706, 2021.
C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised learning for anomaly detection and localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021, pp. 9664–9674.
H. M. Schl ̈uter, J. Tan, B. Hou, and B. Kainz, “Self-supervised out-of-distribution detection and localization with natural synthetic anomalies (nsa),” in arXiv preprint arXiv:2109.15222, 2021.
K. Roth, L. Pemula, J. Zepeda, B. Sch ̈olkopf, T. Brox, and P. Gehler,“Towards total recall in industrial anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 14 318–14 328.
H. Deng and X. Li, “Anomaly detection via reverse distillation from one-class embedding,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 9737–9746.
S. Lee, S. Lee, and B. C. Song, “Cfa: Coupled-hypersphere-based feature adaptation for target-oriented anomaly localization,” in arXiv preprint arXiv:2206.04325, 2022.
P. Bergmann, S. L ̈owe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsupervised defect segmentation by applying structural similarity to autoencoders,” in arXiv preprint arXiv:1807.02011, 2018.
W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R. J. Radke, and O. Camps, “Towards visually explaining variational autoencoders,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, pp. 8642-8651.
D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019, pp. 1705-1714.
S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised anomaly detection via adversarial training,” in Asian conference on computer vision, Springer, 2018, pp. 622–637.
T. Schlegl, P. Seeb ̈ock, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised anomaly detection with generative adversarial networks to guide marker discovery,” in International conference on information processing in medical imaging, Springer, 2017, pp. 146–157.
S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic novelty detection with adversarial autoencoders,” in Advances in neural information processing systems, vol. 31, 2018.
Q. Li, L. Shen, S. Guo, and Z. Lai, “Wavelet integrated cnns for noise-robust image classification,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, pp. 7245-7254.
H. Demirel and G. Anbarjafari, “Discrete wavelet transform-based satellite image resolution enhancement,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, pp. 1997–2004, 2011.
J.-B. Grill, F. Strub, F. Altch ́e, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al.,“Bootstrap your own latent-a new approach to self-supervised learning,” in Advances in neural information processing systems, vol. 33, pp. 21 271–21 284, 2020.
T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning, Jul 2020, pp. 1597–1607.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
J. Johnson, M. Douze, and H. J ́egou, “Billion-scale similarity search with gpus,” in IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2021.
P. P ́erez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM SIGGRAPH 2003 Papers, 2003, p. 313–318.
O. Rippel, P. Mertens, and D. Merhof, “Modeling the distribution of normal data in pre-trained deep features for anomaly detection,” in 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp.6726–6733.
O. Sener and S. Savarese, “Active learning for convolutional neural networks: A core-set approach,” in International Conference on Learning Representations, 2018.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, p. 770-778.
T. Devries and G. W. Taylor, “Improved regularization of convolutional neural networks with cutout,” in arXiv preprint arXiv:1708.04552, 2017.
K. Perlin, “An image synthesizer,” in ACM Siggraph Computer Graphics, 1985, vol. 19, no. 3, p. 287–296.
A. Jung, “Imgaug documentation,” Readthedocs. io, vol. 25, Jun 2019.
T. Defard, A. Setkov, A. Loesch, and R. Audigier, “Padim: A patch distribution modeling framework for anomaly detection and localization,” in International Conference on Pattern Recognition, 2021, pp. 475–489.
J. Yi and S. Yoon, “Patch svdd: Patch-level svdd for anomaly detection and segmentation,” in Proceedings of the Asian Conference on Computer Vision (ACCV), November 2020.
P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad – a comprehensive real-world dataset for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019, pp. 9592-9600.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems, vol. 32, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83163-
dc.description.abstract在圖像異常檢測的領域,異常的部分通常是少見而且無法預測的。因此,我們的目標是構建一個檢測架構,能夠在只有正常數據的情況下檢測未知的異常。在本文中,我們介紹了一個兩階段架構,其使用自監督學習來檢測和定位圖像中的異常。我們利用設計的數據增強策略來模擬真實的異常,讓模型學習區分正常數據和合成的異常數據。此外,我們比較了兩種可以結合不同層級語意特徵的方法,這兩種方法在異常檢測上都獲得了不錯的結果。無需額外的訓練資料和預訓練模型,本文提出的方法在MVTec AD 基準數據集上達到了96.4% AUROC的異常檢測分數及96.1% AUROC的異常定位分數,足以和現有的論文方法競爭。此結果展現了我們的方法在產業應用中的潛力。zh_TW
dc.description.abstractIn visual anomaly detection, anomalies are often rare and unpredictable. For this reason, we aim to build a detection framework that can detect unseen anomalies with only anomaly-free examples. In this paper, we introduce a two-stage framework for detecting and localizing anomalies in images using self-supervised learning. We simulate anomalies through the designed augmentation strategies, and the model learns to distinguish normal data from synthetic anomalies. In addition, we compare two methods for combining representations from different semantic levels of our network, and both of the methods obtain competitive results for defect detection. Without extra training samples and pre-trained models, the proposed approach achieves 96.4% detection AUROC and 96.1% localization AUROC on the MVTec AD benchmark, which is competitive against existing unsupervised methods. The results demonstrate the potential of our method for industrial applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:04:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-10T17:04:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES viii
Chapter 1 Introduction 1
Chapter 2 Related Work 3
2.1 Reconstruction-based Methods 3
2.2 Self-supervised Learning 4
2.3 Transfer Learning 5
2.4 Discrete Wavelet Transform 6
Chapter 3 Approach 7
3.1 Synthetic Anomalies Generation 7
3.1.1 CutPaste 7
3.1.2 PerlinImgAug 8
3.2 Training 11
3.2.1 Multi-class Classification 11
3.3 Inference 12
3.3.1 Feature Extraction 12
3.3.2 Aggregation of Multi-level Features 12
3.3.3 Nearest Neighbor Search 13
Chapter 4 Experiments 17
4.1 Dataset 17
4.2 Implementation Details 18
4.3 Evaluation Metric 18
4.4 Results 19
4.4.1 Defect Detection 19
4.4.2 Defect Localization 20
4.5 Ablation Study 23
4.5.1 t-SNE Visualization 23
4.5.2 Feature Hierarchy 24
4.5.3 Local Smoothing 27
Chapter 5 Conclusion 28
REFERENCE 29
-
dc.language.isoen-
dc.subject圖像異常檢測zh_TW
dc.subject特徵提取zh_TW
dc.subject深度學習zh_TW
dc.subject自監督學習zh_TW
dc.subject圖像異常定位zh_TW
dc.subjectFeature extractionen
dc.subjectImage anomaly localizationen
dc.subjectImage anomaly detectionen
dc.subjectSelf-supervised learningen
dc.subjectDeep learningen
dc.title利用模擬異常進行自監督影像異常檢測及定位zh_TW
dc.titleSelf-Supervised Image Anomaly Detection and Localization with Synthetic Anomaliesen
dc.title.alternativeSelf-Supervised Image Anomaly Detection and Localization with Synthetic Anomalies-
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee雷欽隆;王鈺強;余承叡zh_TW
dc.contributor.oralexamcommitteeChin-Laung Lei;Yu-Chiang Wang;en
dc.subject.keyword圖像異常檢測,圖像異常定位,自監督學習,深度學習,特徵提取,zh_TW
dc.subject.keywordImage anomaly detection,Image anomaly localization,Self-supervised learning,Deep learning,Feature extraction,en
dc.relation.page33-
dc.identifier.doi10.6342/NTU202204080-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-2609202213261400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved