Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張百恩(BEI-EN CHANG)
dc.contributor.authorHong-Xuan Luen
dc.contributor.author盧弘軒zh_TW
dc.date.accessioned2022-11-25T07:45:48Z-
dc.date.available2023-08-31
dc.date.copyright2021-09-16
dc.date.issued2021
dc.date.submitted2021-08-23
dc.identifier.citationAlbadri, S., Del Bene, F., Revenu, C. (2017). Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods, 121-122, 77-85. https://doi.org/10.1016/j.ymeth.2017.03.005 Arnaout, R., Ferrer, T., Huisken, J., Spitzer, K., Stainier, D. Y., Tristani-Firouzi, M., Chi, N. C. (2007). Zebrafish model for human long QT syndrome. Proc Natl Acad Sci U S A, 104(27), 11316-11321. https://doi.org/10.1073/pnas.0702724104 Asnani, A., Peterson, R. T. (2014). The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech, 7(7), 763-767. https://doi.org/10.1242/dmm.016170 Augustine, S., Gagnaire, B., Floriani, M., Adam-Guillermin, C., Kooijman, S. A. (2011). Developmental energetics of zebrafish, Danio rerio. Comp Biochem Physiol A Mol Integr Physiol, 159(3), 275-283. https://doi.org/10.1016/j.cbpa.2011.03.016 Bakkers, J. (2011). Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res, 91(2), 279-288. https://doi.org/10.1093/cvr/cvr098 Bamforth, S. D., Bragança, J., Farthing, C. R., Schneider, J. E., Broadbent, C., Michell, A. C., Clarke, K., Neubauer, S., Norris, D., Brown, N. A., Anderson, R. H., Bhattacharya, S. (2004). Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet, 36(11), 1189-1196. https://doi.org/10.1038/ng1446 Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. https://doi.org/10.1126/science.1138140 Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading), 151(Pt 8), 2551-2561. https://doi.org/10.1099/mic.0.28048-0 Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J. W., Xi, J. J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 23(4), 465-472. https://doi.org/10.1038/cr.2013.45 Chen, J. N., van Eeden, F. J., Warren, K. S., Chin, A., Nüsslein-Volhard, C., Haffter, P., Fishman, M. C. (1997). Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development, 124(21), 4373-4382. Chen, L., Tang, L., Xiang, H., Jin, L., Li, Q., Dong, Y., Wang, W., Zhang, G. (2014). Advances in genome editing technology and its promising application in evolutionary and ecological studies. Gigascience, 3, 24. https://doi.org/10.1186/2047-217x-3-24 Chen, M., Mao, A., Xu, M., Weng, Q., Mao, J., Ji, J. (2019). CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett, 447, 48-55. https://doi.org/10.1016/j.canlet.2019.01.017 Chiu, S. N., Shao, P. L., Wang, J. K., Chen, H. C., Lin, M. T., Chang, L. Y., Lu, C. Y., Lee, P. I., Huang, L. M., Wu, M. H. (2014). Severe bacterial infection in patients with heterotaxy syndrome. J Pediatr, 164(1), 99-104 e101. https://doi.org/10.1016/j.jpeds.2013.08.051 De Luca, E., Zaccaria, G. M., Hadhoud, M., Rizzo, G., Ponzini, R., Morbiducci, U., Santoro, M. M. (2014). ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Scientific Reports, 4(1), 4898. https://doi.org/10.1038/srep04898 Dhillon, S. S., Dóró, E., Magyary, I., Egginton, S., Sík, A., Müller, F. (2013). Optimisation of embryonic and larval ECG measurement in zebrafish for quantifying the effect of QT prolonging drugs. PLoS One, 8(4), e60552. https://doi.org/10.1371/journal.pone.0060552 Dougan, S. T., Warga, R. M., Kane, D. A., Schier, A. F., Talbot, W. S. (2003). The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development, 130(9), 1837-1851. https://doi.org/10.1242/dev.00400 El-Rass, S., Eisa-Beygi, S., Khong, E., Brand-Arzamendi, K., Mauro, A., Zhang, H., Clark, K. J., Ekker, S. C., Wen, X. Y. (2017). Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly. Biol Open, 6(3), 348-357. https://doi.org/10.1242/bio.021212 Fakhro, K. A., Choi, M., Ware, S. M., Belmont, J. W., Towbin, J. A., Lifton, R. P., Khokha, M. K., Brueckner, M. (2011). Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A, 108(7), 2915-2920. https://doi.org/10.1073/pnas.1019645108 Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., Schier, A. F., Talbot, W. S. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature, 395(6698), 181-185. https://doi.org/10.1038/26013 Freedom, R. M., Jaeggi, E. T., Lim, J. S., Anderson, R. H. (2005). Hearts with isomerism of the right atrial appendages - one of the worst forms of disease in 2005. Cardiol Young, 15(6), 554-567. https://doi.org/10.1017/S1047951105001708 Genge, C. E., Lin, E., Lee, L., Sheng, X., Rayani, K., Gunawan, M., Stevens, C. M., Li, A. Y., Talab, S. S., Claydon, T. W., Hove-Madsen, L., Tibbits, G. F. (2016). The Zebrafish Heart as a Model of Mammalian Cardiac Function. Rev Physiol Biochem Pharmacol, 171, 99-136. https://doi.org/10.1007/112_2016_5 Granato, M., van Eeden, F. J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., Kane, D. A., Kelsh, R. N., Mullins, M. C., Odenthal, J., Nusslein-Volhard, C. (1996). Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development, 123, 399-413. https://www.ncbi.nlm.nih.gov/pubmed/9007258 Grant, M. G., Patterson, V. L., Grimes, D. T., Burdine, R. D. (2017). Modeling Syndromic Congenital Heart Defects in Zebrafish. Curr Top Dev Biol, 124, 1-40. https://doi.org/10.1016/bs.ctdb.2016.11.010 Hatta, K., Kimmel, C. B., Ho, R. K., Walker, C. (1991). The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature, 350(6316), 339-341. https://doi.org/10.1038/350339a0 Hatta, K., Puschel, A. W., Kimmel, C. B. (1994). Midline signaling in the primordium of the zebrafish anterior central nervous system. Proc Natl Acad Sci U S A, 91(6), 2061-2065. https://doi.org/10.1073/pnas.91.6.2061 Howe, D. G., Bradford, Y. M., Conlin, T., Eagle, A. E., Fashena, D., Frazer, K., Knight, J., Mani, P., Martin, R., Moxon, S. A., Paddock, H., Pich, C., Ramachandran, S., Ruef, B. J., Ruzicka, L., Schaper, K., Shao, X., Singer, A., Sprunger, B., Van Slyke, C. E., Westerfield, M. (2013). ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Res, 41(Database issue), D854-860. https://doi.org/10.1093/nar/gks938 Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., Tsai, H. J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn, 228(1), 30-40. https://doi.org/10.1002/dvdy.10356 Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R. J., Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3), 227-229. https://doi.org/10.1038/nbt.2501 Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 169(12), 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987 Jansen, R., Embden, J. D., Gaastra, W., Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 43(6), 1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x Jo, Y. I., Suresh, B., Kim, H., Ramakrishna, S. (2015). CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochim Biophys Acta, 1856(2), 234-243. https://doi.org/10.1016/j.bbcan.2015.09.003 Kane, D. A., Maischein, H. M., Brand, M., van Eeden, F. J., Furutani-Seiki, M., Granato, M., Haffter, P., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., Kelsh, R. N., Mullins, M. C., Odenthal, J., Warga, R. M., Nüsslein-Volhard, C. (1996). The zebrafish early arrest mutants. Development, 123, 57-66. Kim, D., Alptekin, B., Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics, 18(1), 31-41. https://doi.org/10.1007/s10142-017-0572-x Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn, 203(3), 253-310. https://doi.org/10.1002/aja.1002030302 Kothari, S. S. (2014). Non-cardiac issues in patients with heterotaxy syndrome. Ann Pediatr Cardiol, 7(3), 187-192. https://doi.org/10.4103/0974-2069.140834 Lander, E. S. (2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. https://doi.org/10.1016/j.cell.2015.12.041 Lim, J. S., McCrindle, B. W., Smallhorn, J. F., Golding, F., Caldarone, C. A., Taketazu, M., Jaeggi, E. T. (2005). Clinical features, management, and outcome of children with fetal and postnatal diagnoses of isomerism syndromes. Circulation, 112(16), 2454-2461. https://doi.org/10.1161/CIRCULATIONAHA.105.552364 Lin, J. H., Chang, C. I., Wang, J. K., Wu, M. H., Shyu, M. K., Lee, C. N., Lue, H. C., Hsieh, F. C. (2002). Intrauterine diagnosis of heterotaxy syndrome. Am Heart J, 143(6), 1002-1008. https://doi.org/10.1067/mhj.2002.122873 Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct, 1, 7. https://doi.org/10.1186/1745-6150-1-7 Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826. https://doi.org/10.1126/science.1232033 Meno, C., Shimono, A., Saijoh, Y., Yashiro, K., Mochida, K., Ohishi, S., Noji, S., Kondoh, H., Hamada, H. (1998). <em>lefty-1</em> Is Required for Left-Right Determination as a Regulator of <em>lefty-2</em> and <em>nodal</em>. Cell, 94(3), 287-297. https://doi.org/10.1016/S0092-8674(00)81472-5 Mojica, F., Garrett, R. (2013). Discovery and seminal developments in the CRISPR field. In (pp. 1-31). https://doi.org/10.1007/978-3-642-34657-6_1 Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J., Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 60(2), 174-182. https://doi.org/10.1007/s00239-004-0046-3 Mojica, F. J., Díez-Villaseñor, C., Soria, E., Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol, 36(1), 244-246. https://doi.org/10.1046/j.1365-2958.2000.01838.x Mojica, F. J., Ferrer, C., Juez, G., Rodríguez-Valera, F. (1995). Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol, 17(1), 85-93. https://doi.org/10.1111/j.1365-2958.1995.mmi_17010085.x Mojica, F. J., Juez, G., Rodríguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol, 9(3), 613-621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x Montague, T. G., Gagnon, J. A., Schier, A. F. (2018). Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development, 145(24). https://doi.org/10.1242/dev.171090 Mousavi, S. E., Patil, J. G. (2020). Light-cardiogram, a simple technique for heart rate determination in adult zebrafish, Danio rerio. Comparative Biochemistry and Physiology Part A: Molecular Integrative Physiology, 246, 110705. https://doi.org/https://doi.org/10.1016/j.cbpa.2020.110705 Nemtsas, P., Wettwer, E., Christ, T., Weidinger, G., Ravens, U. (2010). Adult zebrafish heart as a model for human heart? An electrophysiological study. J Mol Cell Cardiol, 48(1), 161-171. https://doi.org/10.1016/j.yjmcc.2009.08.034 Pierpont, M. E., Brueckner, M., Chung, W. K., Garg, V., Lacro, R. V., McGuire, A. L., Mital, S., Priest, J. R., Pu, W. T., Roberts, A., Ware, S. M., Gelb, B. D., Russell, M. W., American Heart Association Council on Cardiovascular Disease in the, Y., Council on, C., Stroke, N., Council on, G., Precision, M. (2018). Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation, 138(21), e653-e711. https://doi.org/10.1161/CIR.0000000000000606 Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., Dahlman, J. E., Parnas, O., Eisenhaure, T. M., Jovanovic, M., Graham, D. B., Jhunjhunwala, S., Heidenreich, M., Xavier, R. J., Langer, R., Anderson, D. G., Hacohen, N., Regev, A., Feng, G., Sharp, P. A., Zhang, F. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 159(2), 440-455. https://doi.org/10.1016/j.cell.2014.09.014 Pourcel, C., Salvignol, G., Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading), 151(Pt 3), 653-663. https://doi.org/10.1099/mic.0.27437-0 Ran, F. A., Hsu, P. D., Lin, C. Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., Zhang, F. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6), 1380-1389. https://doi.org/10.1016/j.cell.2013.08.021 Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P., Dawid, I. B. (1998). Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol, 199(2), 261-272. https://doi.org/10.1006/dbio.1998.8935 Rebagliati, M. R., Toyama, R., Haffter, P., Dawid, I. B. (1998). cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A, 95(17), 9932-9937. https://doi.org/10.1073/pnas.95.17.9932 Reese, R. M., Dourado, M., Anderson, K., Warming, S., Stark, K. L., Balestrini, A., Suto, E., Lee, W., Riol-Blanco, L., Shields, S. D., Hackos, D. H. (2020). Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci Rep, 10(1), 979. https://doi.org/10.1038/s41598-020-57936-5 Sampath, K., Rubinstein, A. L., Cheng, A. M., Liang, J. O., Fekany, K., Solnica-Krezel, L., Korzh, V., Halpern, M. E., Wright, C. V. (1998). Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature, 395(6698), 185-189. https://doi.org/10.1038/26020 Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res, 39(21), 9275-9282. https://doi.org/10.1093/nar/gkr606 Schier, A. F. (2003). Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol, 19, 589-621. https://doi.org/10.1146/annurev.cellbio.19.041603.094522 Shen, B., Zhang, W., Zhang, J., Zhou, J., Wang, J., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X., Skarnes, W. C. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods, 11(4), 399-402. https://doi.org/10.1038/nmeth.2857 Shiratori, H., Hamada, H. (2006). The left-right axis in the mouse: from origin to morphology. Development, 133(11), 2095-2104. https://doi.org/10.1242/dev.02384 Stovicek, V., Holkenbrink, C., Borodina, I. (2017). CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res, 17(5). https://doi.org/10.1093/femsyr/fox030 Sutherland, M. J., Ware, S. M. (2009). Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet, 151C(4), 307-317. https://doi.org/10.1002/ajmg.c.30228 Verkerk, A. O., Remme, C. A. (2012). Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol, 3, 255. https://doi.org/10.3389/fphys.2012.00255 Wu, M. H., Wang, J. K., Lin, J. L., Lai, L. P., Lue, H. C., Young, M. L., Hsieh, F. J. (1998). Supraventricular tachycardia in patients with right atrial isomerism. J Am Coll Cardiol, 32(3), 773-779. https://doi.org/10.1016/s0735-1097(98)00307-6 Wu, M. H., Wang, J. K., Lue, H. C. (2002). Sudden death in patients with right isomerism (asplenism) after palliation. J Pediatr, 140(1), 93-96. https://doi.org/10.1067/mpd.2002.120510 Wyman, C., Kanaar, R. (2006). DNA double-strand break repair: all's well that ends well. Annu Rev Genet, 40, 363-383. https://doi.org/10.1146/annurev.genet.40.110405.090451
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82498-
dc.description.abstractRight atrial isomerism (RAI) 又稱兩側右心房症,屬於一種先天性心臟病,新生兒發生率大概約0.02~0.05%,如果不治療,致死率極高。一般的正常人心臟會有4個腔室,包含左右的心房和心室,但RAI的病患只有一個右心房和一個右心室,這會導致充氧血和缺氧血無法阻隔且混合,血氧濃度偏低,出現發紺的缺氧現象。發生的主因是因為在胚胎形成時,控制左右器官分化的基因突變,導致身體無法正常分化,變成兩邊都是右邊的器官,且常合併無脾症。 我們在RAI患者抽血,然後把血液樣本拿去做NGS次世代定序,結果發現Nodal基因有突變發生,307位置的精胺酸 (Arginine) 發生missense變成麩醯胺酸 (Glutamine) (R307Q)。Nodal基因是TGFβ家族的一員,位於10號染色體上,與早期胚胎的發育相關,在人類中,Nodal的突變可能導致異位綜合症 (Heterotaxy)。在斑馬魚中可分為ndr1 (squint mutant) 和ndr2 (cyclops mutant),此實驗是將一段突變的序列-ndr2 (R307Q),以及Crystallin眼睛促進子,附帶綠色的螢光標記蛋白的質體,利用CRISPR/Cas9的方式進行斑馬魚轉殖實驗,爾後觀察斑馬魚的心臟發育。 CRISPR/Cas9是一種細菌遭噬菌體入侵的防禦機制,後來被應用於基因編輯技術上,在此CRISPR/Cas9系統,我們使用了Cas9 D10A Nickase,並提供兩條guide RNA (gRNA),透過double nicking的方法進行基因編輯,藉此降低脫靶效應(off-target effects)。 首先在in vitro實驗,測試gRNA-58號和gRNA-71號以及Cas9 Nuclease,是否能將pGEMT-R307R-1st (ScaI線性化) 和pGEMT-R307Q-1st (ScaI線性化) 和BS-L-oligo-ndr2-exon2-intro2-exon3-R307R-Hu-Cr-IRES-GFP-3'-UTR-R-oligo-1st質體 (XhoI和EcoRI線性化) 切斷。結果顯示,gRNA-58號都會切所有測試的。但是,兩個核苷酸突變 (R307Q) 之後,gRNA-71號依然會辨識R307Q,且切斷DNA,表示有脫靶效應(off-target effects)。 由於上述的效應,我們在兩個gRNA對應的位置進行多點核甘酸序列的突變 (wobble mutation),避免脫靶效應,得到pGEMT-R307R-2nd和pGEMT-R307Q-2nd,這兩個質體,測試結果都不會被gRNA-58號和gRNA-71號所辨識,因此可進行後續in vivo的顯微注射實驗。 在in vivo的實驗,以顯微注射的方式將兩個gRNA、Cas9 D10A Nickase、donor DNA打進一個細胞期的斑馬魚受精卵,爾後進行觀察。在F0第四天的胚胎中,觀察到綠色的螢光蛋白在神經管、neuromast、floor plate以及尾巴區域零星表現。經過篩選,F1的穩定品系中,在第五天時,觀察到綠色的螢光蛋白在神經細胞、floor plate、neuromast零星表現。F1綠色螢光表現的位置,是否對應ndr2基因表現的位置,有待釐清。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:45:48Z (GMT). No. of bitstreams: 1
U0001-1808202122084500.pdf: 25201122 bytes, checksum: 9cdc1a117df94f1c1cfabd5bf6998bcd (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 中文摘要 iii ABSTRACT v 壹、 前言 1 一. 斑馬魚模式動物以及其胚胎發育過程 1 二. 兩側右心房症的臨床表現 2 三. 兩側右心房症的病因 3 四. 臨床檢體研究 6 五. 斑馬魚中NODAL的分佈 8 六. 在斑馬魚動物模型中研究人類心臟疾病 12 七. 斑馬魚心臟的發育與形態 13 八. 斑馬魚在胚胎以及成魚階段時的心率 17 九. CRISPR的由來 18 十. CRISPR/CAS9的作用機制與應用 21 十一. CRISPR/CAS9、ZEN、TALEN三者之間的比較 23 十二. CAS9 D10A NICKASE可降低脫靶效應 24 十三. 使用CRISPR/CAS9系統建立穩定的基因轉殖魚 26 十四. 研究動機 28 貳、 實驗材料 30 參、 實驗方法 39 肆、 結果 74 伍、 討論 81 陸、 未來方向 84 柒、 圖表 85 捌、 參考文獻 114
dc.language.isozh-TW
dc.title在斑馬魚以CRISPR/Cas9基因編輯方法建立ndr2突變之人類遺傳疾病模式zh_TW
dc.titleCRISPR/Cas9 gene editing of zebrafish ndr2 mutation for modeling human diseaseen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee侯欣翰(Hsin-Tsai Liu),林銘泰(Chih-Yang Tseng)
dc.subject.keywordNodal,cyclops,兩側右心房症,CRISPR/Cas9,Cas9 D10A Nickase,double nicking,斑馬魚,zh_TW
dc.subject.keywordNodal,cyclops,right atrial isomerism,CRISPR/Cas9,Cas9 D10A Nickase,double nicking,zebrafish,en
dc.relation.page120
dc.identifier.doi10.6342/NTU202102494
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
dc.date.embargo-lift2023-08-31-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202122084500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
24.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved