Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79307
Title: 基於肺部電腦斷層之肺腺癌EGFR突變預測:結合Patch-based radiomics紋理特徵圖於深度學習網路
EGFR mutations prediction of lung adenocarcinoma based on lung computer tomography: Combined with Patch-based radiomics texture feature map in deep learning network
Authors: Ho-Feng Chen
陳和豐
Advisor: 陳中明(Chung-Ming Chen)
Keyword: 肺腺癌,表皮生長因子受體,EGFR突變,深度學習,lung phantom,radiomics特徵,
Lung Adenocarcinoma,biomarkers,epidermal growth factor receptor,EGFR mutations,deep learning,lung phantom,radiomics feature,
Publication Year : 2021
Degree: 碩士
Abstract: "肺癌已成為世界上最主要癌症死因之一,並且其發病率與死亡率都有逐年上升的趨勢,晚期肺癌患者的5年平均存活率僅有15%。依治療和預後的不同,肺癌主要分為兩種:(I)非小細胞肺癌(Non-small-cell lung cancer,NSCLC);(II)小細胞肺癌(Small-cell lung cancer,SCLC)。其中有85%的患者是屬於NSCLC,並且NSCLC患者大部分都被診斷為肺腺癌(Lung Adenocarcinoma, LAC)。EGFR(epidermal growth factor receptor)是肺癌治療中最有用的biomarkers之一。在亞洲有高達50%的肺癌患者有表皮生長因子受體基因突變(EGFR mutations, mEGFR)。mEGFR患者對EGFR tyrosine kinase inhibitor (EGFR TKI)的反應優於無mEGFR患者。本研究提出「同時考慮CT影像腫瘤內部patchwise成分」的核心概念,開發一套基於深度學習之肺腺癌mEGFR預測模型。結合CT radiomic特徵與patch-based的腫瘤內部區域資訊尋找分類特徵,以協助LAC患者於標靶治療的治療規劃。本研究預測模型在僅考慮腫瘤區域成分的因素下,找尋腫瘤CT影像中之特徵。為達此目標,首先分為肺區分割以及腫瘤分割。 分割結果顯示,本研究之肺區分割平均Dice coefficient為0.9891;腫瘤分割結果平均Dice coefficient為0.806。 接著從分割的腫瘤中提取了 212個3D 灰度共生矩陣(GLCM)之特徵。通過sequence forward feature selection選到energy和entropy為重要特徵。透過patch-base的方式使用5×5×5立方體大小計算原始影像上energy以及entropy的特徵圖作為RGANN分類模型的第二、三個通道輸入。接著在RGANN的第四層加入gated attention機制,將前一層輸入的特徵圖與分割的腫瘤binary影像相乘去引導 RGANN 模型只關注於腫瘤區域,以提高分類的準確性。同時,RGANN的方法與GANN的方法進行了比較。RGANN 在training cohort (n=591,AUC=0.96,ACC = 0.98)validation cohort(n=85,AUC = 0.83,ACC = 0.81)和testing cohort(n=169,AUC = 0.77,ACC = 0.76) 優於 GANN 模型testing cohort(n=169,AUC = 0.74,ACC = 0.73)。此外,本研究針對lung phantom在9種不同輻射劑量(Tube current)與3種不同重建演算法下進行radiomic特徵的提取,並將研究結果應用於真實病人之Lung CT影像上進行分類。研究顯示,在輻射劑量小於200mA的CT影像提取出的radiomic特徵有較大的變化;反之,提取出的特徵則較穩定。 本研究將蒐集之CT影像分為以上兩種情況進行訓練,並且與原始訓練結果進行比較。分類結果顯示,當CT影像皆為大於200mA的情況下,RGANN得到的測試結果為(n=71,AUC = 0.78,ACC = 0.771);當CT影像皆為小於200mA的情況下,RGANN得到的測試結果為(n=98,AUC = 0.63,ACC = 0.676)。以上分類結果可見掃描CT影像時,使用不同的Tube current參數會造成擷取的radiomic特徵有不同的變化,導致在分類mEGFR的結果上顯示,使用較高劑量的CT影像進行分析能得到較好的分類結果。 本研究所提出之RGANN模型透過擷取腫瘤內部patchwise成分,在預測mEGFR方面較僅使用原始CT影像的DL模型達到較好的分類結果。 "
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79307
DOI: 10.6342/NTU202103420
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
U0001-2809202110523900.pdf4.66 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved