請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79307完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Ho-Feng Chen | en |
| dc.contributor.author | 陳和豐 | zh_TW |
| dc.date.accessioned | 2022-11-23T08:57:49Z | - |
| dc.date.available | 2022-01-17 | |
| dc.date.available | 2022-11-23T08:57:49Z | - |
| dc.date.copyright | 2022-01-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-11-08 | |
| dc.identifier.citation | 1. Wender R, Fontham ET, Barrera Jr E, Colditz GA, Church TR, Ettinger DS, Etzioni R, Flowers CR, Scott Gazelle G, Kelsey DKJCacjfc. American Cancer Society lung cancer screening guidelines. 2013;63(2):106-117. 2. Uramoto H, Tanaka FJTlcr. Recurrence after surgery in patients with NSCLC. 2014;3(4):242. 3. Politi K, Herbst RS. Lung cancer in the era of precision medicine. AACR, 2015. 4. Sun S, Schiller JH, Spinola M, Minna JDJTJoci. New molecularly targeted therapies for lung cancer. 2007;117(10):2740-2750. 5. Bonanno L, Favaretto A, Rugge M, Taron M, Rosell RJD. Role of genotyping in non-small cell lung cancer treatment. 2011;71(17):2231-2246. 6. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJJS. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. 2004;304(5676):1497-1500. 7. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FGJNEJoM. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. 2004;350(21):2129-2139. 8. Villalobos P, Wistuba IIJHOC. Lung cancer biomarkers. 2017;31(1):13-29. 9. Helena AY, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJJCcr. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. 2013;19(8):2240-2247. 10. Wenxing D, Yang W, Tong L, Yuanyong W, Wenjie JJZFAZZ. A Review of EGFR-TKIs Therapy of Non-small Cell Lung Cancer with Uncommon EGFR Mutations. 2019;22(9). 11. Fukuoka M, Wu Y-L, Thongprasert S, Sunpaweravong P, Leong S-S, Sriuranpong V, Chao T-Y, Nakagawa K, Chu D-T, Saijo NJJoco. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non–small-cell lung cancer in Asia (IPASS). 2011;29(21):2866-2874. 12. Andrews TD, Baird JW, Wallace WA, Harrison DJJJoTO. Routinely obtained diagnostic material as a source of RNA for personalized medicine in lung cancer patients. 2011;6(5):884-888. 13. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar J-S, Squire JJJoTO. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. 2013;8(7):823-859. 14. Kim TO, Oh IJ, Kho BG, Park HY, Chang JS, Park CK, Shin HJ, Lim JH, Kwon YS, Kim YIJTc. Feasibility of re‐biopsy and EGFR mutation analysis in patients with non‐small cell lung cancer. 2018;9(7):856-864. 15. Bedard PL, Hansen AR, Ratain MJ, Siu LLJN. Tumour heterogeneity in the clinic. 2013;501(7467):355-364. 16. Yang Y, Yang Y, Zhou X, Song X, Liu M, He W, Wang H, Wu C, Fei K, Jiang GJLc. EGFR L858R mutation is associated with lung adenocarcinoma patients with dominant ground-glass opacity. 2015;87(3):272-277. 17. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, Madabhushi AJLc. Radiomics and radiogenomics in lung cancer: a review for the clinician. 2018;115:34-41. 18. Mei D, Luo Y, Wang Y, Gong JJCI. CT texture analysis of lung adenocarcinoma: can Radiomic features be surrogate biomarkers for EGFR mutation statuses. 2018;18(1):1-9. 19. Li X-Y, Xiong J-F, Jia T-Y, Shen T-L, Hou R-P, Zhao J, Fu X-LJJotd. Detection of epithelial growth factor receptor (EGFR) mutations on CT images of patients with lung adenocarcinoma using radiomics and/or multi-level residual convolutionary neural networks. 2018;10(12):6624. 20. Jia T-Y, Xiong J-F, Li X-Y, Yu W, Xu Z-Y, Cai X-W, Ma J-C, Ren Y-C, Larsson R, Zhang JJEr. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. 2019;29(9):4742-4750. 21. Aerts HJ, Grossmann P, Tan Y, Oxnard GR, Rizvi N, Schwartz LH, Zhao BJSr. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. 2016;6(1):1-10. 22. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu YJERJ. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. 2019;53(3). 23. Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao C, Sun Y, Tian J, Zhao XJNc. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. 2020;11(1):1-11. 24. Ciardiello F, Tortora GJNEJoM. EGFR antagonists in cancer treatment. 2008;358(11):1160-1174. 25. Hynes NE, Lane HAJNRC. ERBB receptors and cancer: the complexity of targeted inhibitors. 2005;5(5):341-354. 26. Metro GJTlcr. EGFR targeted therapy for lung cancer: are we almost there? 2018;7(Suppl 2):S142. 27. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, Varella-Garcia M, Franklin WA, Aronson SL, Su P-FJJ. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. 2014;311(19):1998-2006. 28. Shi Y, Li J, Zhang S, Wang M, Yang S, Li N, Wu G, Liu W, Liao G, Cai KJPo. Molecular epidemiology of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology–mainland China subset analysis of the PIONEER study. 2015;10(11):e0143515. 29. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DBJJoto. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. 2015;10(9):1243-1260. 30. Tokumo M, Toyooka S, Kiura K, Shigematsu H, Tomii K, Aoe M, Ichimura K, Tsuda T, Yano M, Tsukuda KJCcr. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non–small cell lung cancers. 2005;11(3):1167-1173. 31. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton LJPotNAoS. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. 2004;101(36):13306-13311. 32. Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, Zakowski MF, Kris MG, Ladanyi M, Miller VAJCcr. Clinical course of patients with non–small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. 2006;12(3):839-844. 33. Normanno N, Denis MG, Thress KS, Ratcliffe M, Reck M. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer. Oncotarget 2017;8(7):12501. 34. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I. Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. New England Journal of Medicine 2010;362(25):2380-2388. 35. Shi Y, Wang L, Han B, Li W, Yu P, Liu Y, Ding C, Song X, Yong MZ, Ren X. First-line icotinib versus cisplatine/pemetrexed plus pemetrexed maintenance therapy in lung adenocarcinoma patients with sensitizing EGFR mutation (CONVINCE). American Society of Clinical Oncology, 2016. 36. Tan C-S, Gilligan D, Pacey SJTlo. Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer. 2015;16(9):e447-e459. 37. Wu Y-L, Zhou C, Hu C-P, Feng J, Lu S, Huang Y, Li W, Hou M, Shi JH, Lee KYJTlo. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. 2014;15(2):213-222. 38. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos BJNEJoM. EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. 2005;352(8):786-792. 39. Harvey RD, Adams VR, Beardslee T, Medina PJJoOPP. Afatinib for the treatment of EGFR mutation-positive NSCLC: A review of clinical findings. 2020;26(6):1461-1474. 40. Sequist LV, Yang JCH, Yamamoto N, O'Byrne K, Hirsh V, Mok T, Geater SL, Orlov S, Tsai CM, Boyer MJJoco. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. 2013;31(27):3327-3334. 41. Kemerink GJ, Lamers RJ, Pellis BJ, Kruize HH, Van Engelshoven JJMP. On segmentation of lung parenchyma in quantitative computed tomography of the lung. 1998;25(12):2432-2439. 42. Nery F, Silva JS, Ferreira NC, Caramelo F. 3D automatic lung segmentation in low-dose CT. 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG): IEEE, 2012; p. 1-4. 43. van Rikxoort EM, de Hoop B, Viergever MA, Prokop M, van Ginneken BJMp. Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. 2009;36(7):2934-2947. 44. Rebouc PP, Sarmento RM, Cortez PC, De VHCJIJoCA. Adaptive crisp active contour method for segmentation and reconstruction of 3d lung structures. 2015;111(4). 45. Sahu SP, Kamble B, Doriya R. 3D Lung Segmentation Using Thresholding and Active Contour Method. Ambient Communications and Computer Systems: Springer, 2020; p. 369-380. 46. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer, 2015; p. 234-241. 47. Xu M, Qi S, Yue Y, Teng Y, Xu L, Yao Y, Qian WJBeo. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. 2019;18(1):1-21. 48. Mansoor A, Bagci U, Foster B, Xu Z, Papadakis GZ, Folio LR, Udupa JK, Mollura DJJR. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. 2015;35(4):1056-1076. 49. Guo Y, Feng Y, Sun J, Zhang N, Lin W, Sa Y, Wang PJC, medicine mmi. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model. 2014;2014. 50. Shakibapour E, Cunha A, Aresta G, Mendonça AM, Campilho AJESwA. An unsupervised metaheuristic search approach for segmentation and volume measurement of pulmonary nodules in lung CT scans. 2019;119:415-428. 51. Soltani-Nabipour J, Khorshidi A, Noorian BJNE, Technology. Lung tumor segmentation using improved region growing algorithm. 2020. 52. Liu H, Cao H, Song E, Ma G, Xu X, Jin R, Jin Y, Hung C-CJPM. A cascaded dual-pathway residual network for lung nodule segmentation in CT images. 2019;63:112-121. 53. Aresta G, Jacobs C, Araújo T, Cunha A, Ramos I, van Ginneken B, Campilho AJSr. iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. 2019;9(1):1-9. 54. Jiang J, Hu Y-C, Liu C-J, Halpenny D, Hellmann MD, Deasy JO, Mageras G, Veeraraghavan HJItomi. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. 2018;38(1):134-144. 55. Chen Y, Yang Y, Ma L, Zhu H, Feng T, Jiang S, Wei Y, Wang T, Sun XJEjor. Prediction of EGFR mutations by conventional CT-features in advanced pulmonary adenocarcinoma. 2019;112:44-51. 56. Hong SJ, Kim TJ, Choi YW, Park J-S, Chung J-H, Lee KWJEr. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes. 2016;26(10):3660-3668. 57. Yang JC-H, Wu Y-L, Schuler M, Sebastian M, Popat S, Yamamoto N, Zhou C, Hu C-P, O'Byrne K, Feng JJTlo. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. 2015;16(2):141-151. 58. Ke E, Zhou Q, Zhang Q-Y, Su J, Chen Z-H, Zhang X-C, Xu C-R, Yang J-J, Tu H-Y, Yan H-HJJoTO. A higher proportion of the EGFR T790M mutation may contribute to the better survival of patients with exon 19 deletions compared with those with L858R. 2017;12(9):1368-1375. 59. Koo HJ, Kim MY, Park S, Lee HN, Kim HJ, Lee JC, Kim S-W, Lee DH, Choi C-MJR. Non–small cell lung cancer with resistance to EGFR-TKI therapy: CT characteristics of T790M mutation–positive cancer. 2018;289(1):227-237. 60. Liu Y, Kim J, Balagurunathan Y, Li Q, Garcia AL, Stringfield O, Ye Z, Gillies RJJClc. Radiomic features are associated with EGFR mutation status in lung adenocarcinomas. 2016;17(5):441-448. e446. 61. Bak SH, Park H, Sohn I, Lee SH, Ahn M-J, Lee HYJSr. Prognostic impact of longitudinal monitoring of radiomic features in patients with advanced non-small cell lung cancer. 2019;9(1):1-9. 62. Zhao W, Yang J, Sun Y, Li C, Wu W, Jin L, Yang Z, Ni B, Gao P, Wang PJCr. 3D deep learning from CT scans predicts tumor invasiveness of subcentimeter pulmonary adenocarcinomas. 2018;78(24):6881-6889. 63. Zhao W, Yang J, Ni B, Bi D, Sun Y, Xu M, Zhu X, Li C, Jin L, Gao PJCm. Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning. 2019;8(7):3532-3543. 64. Mehta R, Sivaswamy J. M-net: A convolutional neural network for deep brain structure segmentation. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017): IEEE, 2017; p. 437-440. 65. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin IJapa. Attention is all you need. 2017. 66. Ververidis D, Kotropoulos C. Sequential forward feature selection with low computational cost. 2005 13th European Signal Processing Conference: IEEE, 2005; p. 1-4. 67. Kukreja SL, Löfberg J, Brenner MJJIpv. A least absolute shrinkage and selection operator (LASSO) for nonlinear system identification. 2006;39(1):814-819. 68. Yang X, Tridandapani S, Beitler JJ, Yu DS, Yoshida EJ, Curran WJ, Liu TJMp. Ultrasound GLCM texture analysis of radiation‐induced parotid‐gland injury in head‐and‐neck cancer radiotherapy: An in vivo study of late toxicity. 2012;39(9):5732-5739. 69. Linfoot EHJI, control. An informational measure of correlation. 1957;1(1):85-89. 70. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition2018; p. 7132-7141. 71. Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks. International Conference on Machine Learning: PMLR, 2017; p. 3319-3328. 72. Tian S-f, Liu A-l, Liu J-h, Liu Y-j, Pan J-dJJjor. Potential value of the PixelShine deep learning algorithm for increasing quality of 70 kVp+ ASiR-V reconstruction pelvic arterial phase CT images. 2019;37(2):186-190. 73. Fan J, Yue M, Melnyk RJWp, GE Healthcare. Benefits of ASiR-V reconstruction for reducing patient radiation dose and preserving diagnostic quality in CT exams. 2014. 74. Solomon J, Lyu P, Marin D, Samei EJMP. Noise and spatial resolution properties of a commercially available deep learning‐based CT reconstruction algorithm. 2020;47(9):3961-3971. 75. Graham RP, Treece AL, Lindeman NI, Vasalos P, Shan M, Jennings LJ, Rimm DLJAop, medicine l. Worldwide frequency of commonly detected EGFR mutations. 2018;142(2):163-167. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/79307 | - |
| dc.description.abstract | "肺癌已成為世界上最主要癌症死因之一,並且其發病率與死亡率都有逐年上升的趨勢,晚期肺癌患者的5年平均存活率僅有15%。依治療和預後的不同,肺癌主要分為兩種:(I)非小細胞肺癌(Non-small-cell lung cancer,NSCLC);(II)小細胞肺癌(Small-cell lung cancer,SCLC)。其中有85%的患者是屬於NSCLC,並且NSCLC患者大部分都被診斷為肺腺癌(Lung Adenocarcinoma, LAC)。EGFR(epidermal growth factor receptor)是肺癌治療中最有用的biomarkers之一。在亞洲有高達50%的肺癌患者有表皮生長因子受體基因突變(EGFR mutations, mEGFR)。mEGFR患者對EGFR tyrosine kinase inhibitor (EGFR TKI)的反應優於無mEGFR患者。本研究提出「同時考慮CT影像腫瘤內部patchwise成分」的核心概念,開發一套基於深度學習之肺腺癌mEGFR預測模型。結合CT radiomic特徵與patch-based的腫瘤內部區域資訊尋找分類特徵,以協助LAC患者於標靶治療的治療規劃。本研究預測模型在僅考慮腫瘤區域成分的因素下,找尋腫瘤CT影像中之特徵。為達此目標,首先分為肺區分割以及腫瘤分割。 分割結果顯示,本研究之肺區分割平均Dice coefficient為0.9891;腫瘤分割結果平均Dice coefficient為0.806。 接著從分割的腫瘤中提取了 212個3D 灰度共生矩陣(GLCM)之特徵。通過sequence forward feature selection選到energy和entropy為重要特徵。透過patch-base的方式使用5×5×5立方體大小計算原始影像上energy以及entropy的特徵圖作為RGANN分類模型的第二、三個通道輸入。接著在RGANN的第四層加入gated attention機制,將前一層輸入的特徵圖與分割的腫瘤binary影像相乘去引導 RGANN 模型只關注於腫瘤區域,以提高分類的準確性。同時,RGANN的方法與GANN的方法進行了比較。RGANN 在training cohort (n=591,AUC=0.96,ACC = 0.98)validation cohort(n=85,AUC = 0.83,ACC = 0.81)和testing cohort(n=169,AUC = 0.77,ACC = 0.76) 優於 GANN 模型testing cohort(n=169,AUC = 0.74,ACC = 0.73)。此外,本研究針對lung phantom在9種不同輻射劑量(Tube current)與3種不同重建演算法下進行radiomic特徵的提取,並將研究結果應用於真實病人之Lung CT影像上進行分類。研究顯示,在輻射劑量小於200mA的CT影像提取出的radiomic特徵有較大的變化;反之,提取出的特徵則較穩定。 本研究將蒐集之CT影像分為以上兩種情況進行訓練,並且與原始訓練結果進行比較。分類結果顯示,當CT影像皆為大於200mA的情況下,RGANN得到的測試結果為(n=71,AUC = 0.78,ACC = 0.771);當CT影像皆為小於200mA的情況下,RGANN得到的測試結果為(n=98,AUC = 0.63,ACC = 0.676)。以上分類結果可見掃描CT影像時,使用不同的Tube current參數會造成擷取的radiomic特徵有不同的變化,導致在分類mEGFR的結果上顯示,使用較高劑量的CT影像進行分析能得到較好的分類結果。 本研究所提出之RGANN模型透過擷取腫瘤內部patchwise成分,在預測mEGFR方面較僅使用原始CT影像的DL模型達到較好的分類結果。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-23T08:57:49Z (GMT). No. of bitstreams: 1 U0001-2809202110523900.pdf: 4767461 bytes, checksum: 9af23493f4f0bbf963e82d4b7661c2da (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 論文口試委員審定書 2 謝辭 3 摘要 4 Abstract 6 目錄 8 圖目錄 10 表目錄 11 第1章 緒論 12 1.1研究背景與動機 12 1.2研究目的 16 1.3表皮生長因子(EGFR)表型介紹 17 1.3.1 mEGFR主要分布族群與發生位置 18 1.4表皮生長因子(EGFR) mutations之臨床診斷工具 18 1.5表皮生長因子(EGFR) mutations治療藥物 18 1.5.1第一代EGFR-TKI 19 1.5.2第二代EGFR-TKI 19 1.5.3第三代EGFR-TKI 20 第2章 文獻回顧 21 2.1肺區域之半自動/自動分割 21 2.2腫瘤區域之半自動/自動分割 22 2.3表皮生長因子(EGFR)表型之電腦輔助診斷 23 2.3.1 EGFR突變表現型與其預後之文獻回顧 24 2.3.2 EGFR突變與CT影像關聯性之文獻回顧 24 第3章 CNN之基礎理論 27 3.1 Convolutional layer 27 3.2 Pooling layer 28 3.3 Spatial dropout 29 3.4 Flatten and Fully connected layer 30 第4章 研究材料與方法 31 4.1研究硬體設備與資料 31 4.2收案對象 31 4.3研究方法 31 4.3.1 Automatic Lung area segmentation 32 4.3.2 Semi-automatic nodule segmentation 34 4.3.3 Extract patch-based Radiomic feature maps 37 4.3.4 mEGFR classification model 39 4.3.5 Classification model explanation 41 4.3.6 Performance metrics 42 第5章 研究結果與討論 44 5.1肺區域分割結果 44 5.2 EGFR腫瘤區域分割結果 46 5.3 mEGFR分類結果 49 5.3.1使用常規Radiomics特徵進行mEGFR分類模型 49 5.3.2基於深度學習之mEGFR分類模型 51 5.3.3 mEGFR分類之結果與討論 53 5.4 Lung CT影像在不同劑量與重建演算法下之radiomic feature差異 56 5.4.1將CT影像分為兩種不同掃描輻射劑量之訓練結果 60 第6章 結論與未來展望 63 6.1結論 63 6.2未來展望 63 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.title | 基於肺部電腦斷層之肺腺癌EGFR突變預測:結合Patch-based radiomics紋理特徵圖於深度學習網路 | zh_TW |
| dc.title | EGFR mutations prediction of lung adenocarcinoma based on lung computer tomography: Combined with Patch-based radiomics texture feature map in deep learning network | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張允中(Hsin-Tsai Liu),林孟暐(Chih-Yang Tseng),潘亭壽 | |
| dc.subject.keyword | 肺腺癌,表皮生長因子受體,EGFR突變,深度學習,lung phantom,radiomics特徵, | zh_TW |
| dc.subject.keyword | Lung Adenocarcinoma,biomarkers,epidermal growth factor receptor,EGFR mutations,deep learning,lung phantom,radiomics feature, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202103420 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-11-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2809202110523900.pdf | 4.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
