Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7746
Title: 不穩定時間序列的高維度模型選擇
Model Selection for Unit-root Time Series with Many Predictors
Authors: Shuo-Chieh Huang
黃碩傑
Advisor: 銀慶剛
Keyword: 偏最小平方法,正交貪婪演算法,最小絕對值收斂和選擇算子,適應最小絕對值收斂和選擇算子,非穩定時間序列,有外生輸入的自我迴歸模型,
Partial least squares,Orthogonal greedy algorithm,LASSO,Adaptive LASSO,non-stationary time series,ARX,
Publication Year : 2017
Degree: 碩士
Abstract: 本篇文章旨在研究如何在有外生輸入的自我迴歸模型下做模型選擇。我們特別考慮在目標時間序列可能為非穩定以及可用以預測的變數數目龐大的情形。受到Ing and Lai (2011)的OGA+HDIC+Trim的啟發,我們建議用偏最小平方法(Partial Least Squares)取代正交貪婪演算法(Orthogonal Greedy Algorithm)作為向前包含變數演算法,我們稱其為PLS+HDIC+Trim。即使在迴歸因子有可能為非穩定的情形下,PLS+HDIC+Trim仍具有相當強的模型選擇能力。因此,即使我們不知道非穩定時間序列的差分次數或是有興趣的序列不是差分穩定,PLS+HDIC+Trim能仍發揮用處。我們亦提出了一個方法來選擇差分穩定模型裡的差分次數。模擬結果顯示PLS+HDIC+Trim的表現較其他高維度方法佳。我們將此方法套用至美國總體經濟資料。
Model selection for the autoregressive models with exogenous inputs (ARX models) is studied in this paper. In particular, we consider the situation where the series is possibly non-stationary and a large number of predictors (even larger than the sample size) is available. Inspired by Ing and Lai (2011)’s OGA+HDIC+Trim, we propose to replace the orthogonal greedy algorithm (OGA) by the partial least squares (PLS) as forward inclusion algorithm, which we call the PLS+HDIC+Trim. The PLS+HDIC+Trim has a strong model selection ability even when the regressors are non-stationary. Therefore, this new method is still valid without any prior knowledge of the integration order or under models that are not difference-stationary. Also, we propose an order selection scheme that can select the integration order for difference- stationary models. Simulation studies also showed that the PLS+HDIC+Trim outperformed other high-dimensional methods. We apply this new method to U.S. macroeconomic data.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7746
DOI: 10.6342/NTU201702380
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2027-08-01
Appears in Collections:經濟學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Until 2027-08-01
2.14 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved