Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor銀慶剛
dc.contributor.authorShuo-Chieh Huangen
dc.contributor.author黃碩傑zh_TW
dc.date.accessioned2021-05-19T17:52:08Z-
dc.date.available2027-08-01
dc.date.available2021-05-19T17:52:08Z-
dc.date.copyright2017-08-03
dc.date.issued2017
dc.date.submitted2017-08-01
dc.identifier.citationIng, C.-K. and Lai T. L. (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. Statistica Sinica, 21:1473– 1513.
Jurado, K., Ludvigson, S. C., and Ng, S. (2015). Measuring uncertainty. American Economic Review, 105(3):1177–1216.
Kim, H. H. and Swanson, N. R. (2014).Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence. Journal of Econometrics, 178:352–367.
Kock, A. B. (2016). Consistent and conservative model selection with the adap- tive lasso in stationary and nonstationary autoregressions. Econometric Theory, 32(01):243–259.
Medeiros, M. C. and Mendes, E. F. (2016). l1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors. Journal of Econometrics, 191:255–271.
Stock, J. H. and Watson, M. W. (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460):1167–1179.
Stock, J. H. and Watson, M. W. (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2):147–162.
Temlyakov, V. N. (2000). Weak greedy algorithms. Advances in Computational Mathematics, 12(2):213–227.
Tibshirani, R. (1996).Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Statistical Methodology), pages 267–288.
Wang, H., Li, G., and Tsai, C.-L. (2007). Regression shrinkage and selection via the lasso regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1):63–78.
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418–1429.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7746-
dc.description.abstract本篇文章旨在研究如何在有外生輸入的自我迴歸模型下做模型選擇。我們特別考慮在目標時間序列可能為非穩定以及可用以預測的變數數目龐大的情形。受到Ing and Lai (2011)的OGA+HDIC+Trim的啟發,我們建議用偏最小平方法(Partial Least Squares)取代正交貪婪演算法(Orthogonal Greedy Algorithm)作為向前包含變數演算法,我們稱其為PLS+HDIC+Trim。即使在迴歸因子有可能為非穩定的情形下,PLS+HDIC+Trim仍具有相當強的模型選擇能力。因此,即使我們不知道非穩定時間序列的差分次數或是有興趣的序列不是差分穩定,PLS+HDIC+Trim能仍發揮用處。我們亦提出了一個方法來選擇差分穩定模型裡的差分次數。模擬結果顯示PLS+HDIC+Trim的表現較其他高維度方法佳。我們將此方法套用至美國總體經濟資料。zh_TW
dc.description.abstractModel selection for the autoregressive models with exogenous inputs (ARX models) is studied in this paper. In particular, we consider the situation where the series is possibly non-stationary and a large number of predictors (even larger than the sample size) is available. Inspired by Ing and Lai (2011)’s OGA+HDIC+Trim, we propose to replace the orthogonal greedy algorithm (OGA) by the partial least squares (PLS) as forward inclusion algorithm, which we call the PLS+HDIC+Trim. The PLS+HDIC+Trim has a strong model selection ability even when the regressors are non-stationary. Therefore, this new method is still valid without any prior knowledge of the integration order or under models that are not difference-stationary. Also, we propose an order selection scheme that can select the integration order for difference- stationary models. Simulation studies also showed that the PLS+HDIC+Trim outperformed other high-dimensional methods. We apply this new method to U.S. macroeconomic data.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:52:08Z (GMT). No. of bitstreams: 1
ntu-106-R04323013-1.pdf: 2195587 bytes, checksum: c69560de2409d3d8bc072b5d71a34489 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContents
口試委員會審定書 …………………………………...……………………………. i
謝辭 ..…………..……………………………. ……………………………………... ii
中文摘要………………….………………… ……………………………………… iii
Abstract………………………….…………. ………………………………………. iv
1 Introduction 1
2 Methods 4
2.1 The Noiseless PLS……………….……………………………………….5
2.2 The PLS……………………………………………………………...……6
2.3 The PLS+HDIC+Trim……………..…………………………………….8
2.4 Selection of Integration Order……………..…………………………….9
3 Simulation Studies 10
4 Macroeconomic Forecasting 15
4.1 Data……………………………………………………………………….15
4.2 Empirical analysis………………………………………………………...16
6 Conclusion and Discussion 18
Reference 31
dc.language.isoen
dc.title不穩定時間序列的高維度模型選擇zh_TW
dc.titleModel Selection for Unit-root Time Series with Many Predictorsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee冼芻蕘,俞淑惠
dc.subject.keyword偏最小平方法,正交貪婪演算法,最小絕對值收斂和選擇算子,適應最小絕對值收斂和選擇算子,非穩定時間序列,有外生輸入的自我迴歸模型,zh_TW
dc.subject.keywordPartial least squares,Orthogonal greedy algorithm,LASSO,Adaptive LASSO,non-stationary time series,ARX,en
dc.relation.page32
dc.identifier.doi10.6342/NTU201702380
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-02
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
dc.date.embargo-lift2027-08-01-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  此日期後於網路公開 2027-08-01
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved