Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74420
Title: 高速資料中心用面射型與分佈反饋型雷射數據傳輸光源性能分析
Performance Analysis of High-speed VCSEL and DFBLD-EAM Transmitters for Data Centers
Authors: Yu-Hong Lin
林昱宏
Advisor: 林恭如(Gong-Ru Lin)
Keyword: 資料中心,垂直共振腔面射型雷射,分佈反饋式雷射,發光二極體,關鍵控調變,四階脈衝強度調變,正交幅度調制,正交分頻多工,可見光通訊,
data center,vertical cavity surface emitting laser (VCSEL),distributed feedback laser diode (DFBLD),Electro-absorption modulator (EAM),micro light-emitting diode (LED),non-return zero on-off keying (NRZ-OOK),4-level pulse amplitude modulation (PAM-4),quadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM),photonic crystal,
Publication Year : 2019
Degree: 碩士
Abstract: 為了符合資料傳輸的快速發展需求,例如雲端計算、高畫質的社群影音平台和人工智慧,資料中心提供一個獲得高速且高容量資料傳輸的解決方法。光源選擇垂直共振腔面射型雷射(VCSEL)和分佈反饋式雷射(DFBLD)應用於短距離和長距離資料中心,且選擇的高速資料傳輸格式分別有開關鍵控調變(OOK)、四階脈衝強度調變(PAM-4)及正交幅度調制(QAM)正交分頻多工(OFDM)。另一方面,可見光通訊也能夠應用在資料中心內部機架間(inter-racks)的無線傳輸,可利用發光二極體建立一個新穎的小型無線傳輸資料中心。
對於可見光傳輸應用中,實現不同平台(mesa)大小的光子晶體微發光二極體(PhC-μLED)的綜合比較。在平台120 μm長的PhC-μLED擁有最大580W的光功率和外部量子效率,但也表現出最低72 MHz的3-dB調變頻寬。相反的,平台20-μm長的PhC-μLED光功率只有37 μW但擁有最高162 MHz的3-dB調變頻寬。在經過優化後,考慮光功率與類比頻寬之間的取捨將影響傳輸表現。因此PhC-μLED在60/80-μm長的平台採用OOK訊號格式且利用預補償技術皆能夠達到500 Mbit/s的傳輸容量(誤碼率<10^-12)。PhC-μLED 有著80-μm長的平台能載300-MBaud PAM-4訊號有著600 Mbit/s傳輸容量達到KP4前項錯誤更正規範。更進一步,PhC-μLED 有著60-μm長的平台利用16-QAM OFDM傳輸譨夠達到2 Gbit/s。
在短距離資料中心應用,比較質子佈植VCSEL有著不同的光子晶體設計的基本特性和經過100-m OM5多模光纖傳輸QAM-OFDM訊號。根據在纖芯(core)和纖殼(cladding)有著不同週期和孔徑大小,這些設計可以命名為Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2/Corephc1+Cladphc1/Corephc1-reduce+Cladphc1/Corephc1+Cladflat。Corephc1表示在core中有一週期光子晶體、Coreflat表示在core中無光子晶體、Corephc1-reduce在core中有一週期光子晶體且減少光子晶體孔徑、Cladphc2表示在cladding中有兩週期光子晶體,以此類推。首先Coreflat+Cladflat VCSEL 有著最高閥值電流和大的發光孔徑展現出最高0.11的外部量子效率和2 mW的光功率。而Coreflat+Cladphc2 VCSEL在cladding有著兩週期光子晶體顯示最低2 mA的閥值電流、最高15 GHz的3-dB類比頻寬和最低-143 dB/GHz的相對強度雜訊。而Corephc1+Cladphc2 VCSEL為core增加一週期的光子晶體和cladding增加兩週期的光子晶體在光譜上展現單模,傳輸多模光纖時能夠抑制模態色散(modal dispersion)。訊號傳輸經過優化後,Coreflat+Cladphc2 VCSEL傳輸16-QAM-OFDM訊號在背對背情況下能夠達到最高的18-GHz頻寬。在經過100-m OM5多模光纖,Coreflat+Cladphc2 和Corephc1+Cladphc2 VCSEL利用預失真(pre-leveling)技術傳輸16-QAM OFDM皆能夠達到60-Gbit/s的傳輸容量。其中Corephc1+Cladphc2能夠抑制模態色散,所以在傳輸100-m多模光纖後仍與背對背傳輸容量相同。為了更進一步提高傳輸容量,利用了位元分配(bit-loading)適當地分配QAM給OFDM子載波。因此Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 PhC-VCSEL在背對背和經過100-m多模光纖情況下分別可以進一步提高傳輸容量到60.7/85/65和58.5/80.4/63.8 Gbit/s。
為了延長資料中心間的傳輸距離,選擇DFBLD搭配電致吸收調變器(EAM)利用PAM-4傳輸格式和預補償技術實現104-Gbit的傳輸容量。EAM/DFBLD發射器擁有-1.5 dBm的平均功率、出色的53 dB側模抑制比(SMSR)、25-GHz的類比頻寬和-140 dBc/Hz的相對強度雜訊。此外光接收元件也展現出30-GHz的類比頻寬。在OOK傳輸部分,電致吸收調變雷射(EML)和光接收次模組(ROSA)在背對背、2-km和10-km單模光纖傳輸情況下分別實現62、60、54 Gbit/s傳輸容量且達到無差錯標準(誤碼率<10-12)。另外,EML和ROSA在54-Gbit OOK訊號下傳輸2-/10-km單模光纖的接收功率靈敏度(sensitivity)和功率懲罰(power penalty)分別為-6.43/-6.26 dBm和0.07/0.24 dB。為了有效利用元件的頻寬限制,EML和ROSA採用PAM-4訊號格式在背對背和經過2-km單模光纖的情況下提高傳輸速率至104-Gbit/s且達到前項錯誤更正碼標準。1306-nm EML的窄線寬、高調變類比頻寬和低相對強度雜訊經過10-km公里單模光纖並傳輸預補償的48-GBaud PAM-4訊號因為低色散顯示出低的0.25 dB power penalty且符合前項錯誤更正碼標準。
To achieve the demand of rapid development in data transmission such as cloud computing, the high-quality video/audio data streaming of social networking platform and artificial intelligence, the data center provides one of solutions for obtaining high-speed and high-capacity data transmission. The high speed data format demonstrates for short- and long reach data center application with the non-return zero on-off keying (NRZ-OOK), 4-level pulse amplitude modulation (PAM-4) and 16-quadrature amplitude modulation orthogonal frequency division multiplexing (16-QAM OFDM) by vertical cavity surface emitting laser (VCSEL) and distributed feedback laser diode (DFBLD). On the other hands, the visible light communication is employed to establish an inter-rack wireless network for a novel wireless small-world data center by Light-emitting diode (LED).
For high-speed visible light communication transmission application, a comprehensive comparison on the different mesa sizes of photonic crystal micro light-emitting diode (PhC-μLED) is realized. The PhC-μLED with the length of 120 μm exhibits the largest optical power of 580 μW with the highest external quantum efficiency but demonstrates the lowest 3-dB analog bandwidth of 72 MHz. By contrast, the PhC-μLED with the length of 20 μm with lowest optical power of 37 μW provides the highest 3-dB analog bandwidth of 162 MHz. After optimization, the trade-off between optical power and analog bandwidth is considered to affect performance of transmission. The PhC-μLED with mesa lengths of 60/80 μm can transmit on-off keying (OOK) data format at 500 Mbit/s with error free criterion. The device with a mesa length of 80 μm carries the 300-Mbuad PAM-4 data with the corresponding raw data rate of 600 Mbit/s for the qualified KP4-forward error correction (FEC) specification. Furthermore, the 16-QAM-OFDM transmission is employed to achieve the highest data rate of 2 Gbit/s under FEC standard for the device with mesa length of 60 μm.
The proton-implant VCSEL with different photonic crystal designs are compared to transmit the 16-QAM-OFDM data over 100-m OM5 multimode fiber (MMF). The designs use flat core/cladding (indicating Coreflat/Cladflat) and/or PhC core/cladding (denoting Corephc/Cladphc). According to different periods and hole diameter in the core or cladding region, the designs of the photonic crystal are termed Coreflat+Cladflat, Coreflat+Cladphc2, Corephc1+Cladphc2, Corephc1+Cladphc1, Corephc1-reduce+Cladphc1 and Corephc1+Cladflat. The Coreflat+Cladflat VCSEL with highest threshold current and large emission aperture exhibits highest the differential quantum efficiency of 0.11 and output power of 2 mW. The Coreflat+Cladphc2 VCSEL with two periods of photonic crystal in the cladding reveals lowest threshold current of 2 mA, the highest 3-dB frequency bandwidth of 15 dB and lowest relative intensity background noise of -143 dB/GHz. The Corephc1+Cladphc2 VCSEL with additionally adding 1 period of photonic crystal in the core and 2 periods of photonic crystal in the cladding possesses optical spectra of single fundamental mode to suppress the modal dispersion after propagating MMF. After optimization, the Coreflat+Cladphc2 VCSEL chip can achieve the OFDM transmission with the highest bandwidth of 18 GHz in BtB case to meet the forward error correction (FEC) criterion. After propagating through 100-m OM5-MMF with the pre-leveled 16-QAM OFDM data, the Corephc1+Cladphc2 VCSEL with nearly modal-dispersion free still keep the same transmission bit rate of 60 Gbit/s with in the BtB condition. The bit-loading technique is used to allocate suitable QAM level for OFDM subcarriers at different frequency regions, so the Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 PhC-VCSEL can improve the data rate to 60.7/85/65 and 58.5/80.4/63.8 Gbit/s under BtB and 100-m MMF condition, respectively.
High-speed transmitter composed of electro-absorption modulator (EAM) and DFBLD at 1306 nm is demonstrated to carry the 104-Gbit/s PAM-4 data by using a pre-emphasized technique for intra- and inter-data center application. The EAM/DFBLD transmitter offers an average power of -1.5 dBm, an excellent side mode suppression ratio of 53 dB, an analog bandwidth of 25 GHz and a relative intensity noise of -140 dBc/Hz. In addition, the receiver module also exhibits the 30-GHz modulation bandwidth. For on-off keying data, the electro-absorption modulated laser (EML) and receiver optical sub-assembly (ROSA) support the highest transmission capacities of 62, 60 and 54 Gbit/s to meet the error-free criterion (BER<10-12) through BtB, 2- and 10-km single mode fiber (SMF), respectively. In addition, the receiving power sensitivity and power penalty are evaluated as -6.43/-6.26 dBm and 0.07/0.24 dB at 54-Gbit/s OOK data transmission after 2-/10-km SMF propagation. To efficiently employ the limited bandwidth, the data rate of PAM-4 data format is increased to 104 Gbit/s per channel under forward error correction (FEC) criterion at BtB condition. After delivering 2-km SMF, the allowable Baud rate can maintain at 52-GBaud (104 Gbit/s). The narrow-linewidth, high modulation bandwidth and low relative intensity noise of the EML at 1306 nm indicate a low power penalty of 0.25 dB at pre-emphasized 48-Gbaud PAM-4 after propagating 10-km SMF due to the extremely low chromatic dispersion.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74420
DOI: 10.6342/NTU201902852
Fulltext Rights: 有償授權
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
15.25 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved