Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如(Gong-Ru Lin)
dc.contributor.authorYu-Hong Linen
dc.contributor.author林昱宏zh_TW
dc.date.accessioned2021-06-17T08:34:49Z-
dc.date.available2022-08-22
dc.date.copyright2019-08-22
dc.date.issued2019
dc.date.submitted2019-08-09
dc.identifier.citation[1] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, 'Jupiter rising:Adecade of close topologies and centralized control in Google’s datacenter network, ' in Proc. ACM Conf. Special Interest Group Data Commun., pp. 183–197, Aug. 2015.
[2] Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation, IEEE Std 802.3bs, 2017.[Online].Available: http://standards.ieee.org/findstds/standard/802.3ba-2010.html
[3] 400G-FR4 and 400G-LR4 Technical specification, 100G Lambda MSA Group, 2018.[Online]. Available: http://100glambda.com/specifications/send/2-specifications/7-400g-fr4-technical-spec-d2p0-2
[4] S. J. B. Yoo, Y. Yin, and K. Wen, 'Intra and inter datacenter networking: The role of optical packet switching and flexible bandwidth optical networking.' Optical Network Design and Modeling (ONDM), in 16th International Conference on. IEEE, 2012.
[5] L. Luo, D. Guo, J. Wu, T. Qu, T. Chen, and X. Luo, “VLCcube: A vlc enabled hybrid network structure for data centers,” IEEE Trans. Parallel and Distributed Syst., vol. 28, no. 7, pp. 2088–2102, Jul. 2017.
[6] A. S. Hamza, J. S. Deogun, and D. R. Alexander, “Wireless communication in data centers: A survey,” IEEE Commun. Surveys Tut., vol. 18, no. 3, pp. 1572–1595, Jul.-Sep. 2016.
[7] R. Haitz and J. Y. Tsao, “BSolid-state lighting: ‘The Case’ 10 years after the future prospects,” Phys. Status Solidi A, vol. 208, no. 1, pp. 17–29, Jan. 2011.
[8] C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, A. Tyagi, R. A. DeLille, M. D. Craven, F. M. Steranka, and M. R. Krames, “Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation,” Appl. Phys. Lett., vol. 106, no. 3, p. s031101, Jan. 2015.
[9] T. Moudakir, F. Genty, M. Kunzer, P. Börner, T. Passow, S. Suresh, G. Patriarche, K. Köhler, W. Pletschen, J. Wagner, and A. Ougazzaden “Design, fabrication, and characterization of nearmilliwatt-power RCLEDs emitting at 390 nm,” IEEE Photon. J., vol. 5, no. 6, Dec. 2013, Art. ID 8400709.
[10] Y.-F. Yin, W.-Y. Lan, T.-C. Lin, C. Wang, M. Feng, and J.-J. Huang, “High-speed visible light communication using GaN-based light-emitting diodes with photonic crystals,” J. Lightw. Technol., vol. 35, no. 2, pp. 258–264, Jan. 15, 2017.
[11] J. J. D. McKendry, D. Massoubre, S. Zhang, B. Rae, R. Green, E. Gu, R. Henderson, A. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightw. Technol., vol. 30, no. 1, pp. 61–67, 2012.
[12] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing output power of GaN based LEDs grown on chemical wet etching patterned sapphire substrate,” IEEE Photon. Technol. Lett., vol. 18, no. 10, pp. 1152–1154, May 2006.
[13] Y. F. Yin, Y. C. Lin, T. H. Tsai, Y. C. Shen, and J. J. Huang, “Far-field selffocusing and-defocusing radiation behaviors of the electroluminescent light sources due to negative refraction,” Opt. Lett., vol. 38, pp. 184–186, 2013.
[14] Y.-F. Yin, Y.-C. Lin, Y.-C. Liu, Y.-C. Shen, H.-P. Chiang, and J. Huang, “Correlation of angular light profiles of light-emitting diodes to spatial spontaneous emissions from photonic crystals,” J. Appl. Phys., vol. 114, no. 14, p. 143104, 2013.
[15] A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rateadaptive discrete multitone modulation,” IEEE Photon. J., vol. 4, no. 5, pp. 1465–1473, Oct. 2012.
[16] A. Azhar, T. Tran, and D. O’Brien, “A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett., vol. 25, no. 2, pp. 171–174, Jan. 2013
[17] N. Fujimoto and H. Mochizuki, “477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit,” presented at the Optical Fiber Communication Conf./Nat. Fiber Optic Engineers Conf., Anaheim, CA, USA, Mar. 17–21, 2013, Paper JTh2A.73.
[18] N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proc. 40th ECOC, Sep. 21–25, 2014, pp. 1–3.
[19] D. Tsonev, H. Chun, S. Rajbhandari, J. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. Kelly, G. Faulkner, M. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, Apr. 2014.
[20] L. Geng, J. Wei, R. Penty, I. White, and D. Cunningham, “3 Gbit/s LED-based step index plastic optical fiber link using multilevel pulse amplitude modulation,” in Proc. IEEE OFC/NFOEC, Anaheim, CA, USA, Mar. 2013, pp. 1–3.
[21] F. Koyama, 'Recent advances of VCSEL photonics,' J. Lightw. Technol., vol. 24, no. 12, pp. 4502-4513, Dec. 2006.
[22] A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, 'Vertical-cavity surface-emitting lasers for data communication and sensing,' Photonics Res., vol. 7, no. 2, pp. 121-136, Feb. 2019.
[23] H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, C.-H. Wu, W.-H. Cheng, and G.-R. Lin, 'Single-mode VCSEL for Pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100–300 m in OM4 MMF,' Photon. Res., vol. 6, no. 7, pp. 666–673, Jul. 2018.
[24] P. A. Gamage, A. Nirmalathas, C. Lim, E. Wong, D. Novak, and R. Waterhouse, 'Performance comparison of directly modulated VCSEL and DFB lasers in wired-wireless networks,' IEEE Photonics Technol. Lett., vol. 20, no. 24, pp. 2102-2104, Dec. 2008.
[25] K. Choquette, K. Geib, C. Wilmsen, H. Temkin, and L. Coldren, 'Fabrication and performance of vertical-cavity surface-emitting lasers,' New York: Cambridge Univ. Press, 1999, pp. 193-232.
[26] K. Choquette, R. Schneider, K. Lear, and K. Geib, 'Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,' Electron. Lett., vol. 30, no. 24, pp. 2043-2044, Nov. 1994.
[27] D. Vakhshoori, J. D. Wynn, G. J. Zydzik, R. E. Leibenguth, M. T. Asom, K. Kojima, and R. A. Morgan, 'Top‐surface emitting lasers with 1.9 V threshold voltage and the effect of spatial hole burning on their transverse mode operation and efficiencies,' Appl. Phys. Lett., vol. 62, no. 13, pp. 1448-1450, Mar. 1993.
[28] J. Lavrencik, S. K. Pavan, V. A. Thomas, and S. E. Ralph, 'Noise in VCSEL-based links: Direct measurement of VCSEL transverse mode correlations and implications for MPN and RIN,' J. Lightw. Technol., vol. 35, no. 4, pp. 698-705, Feb. 2017.
[29] M. P. Tan, A. M. Kasten, J. D. Sulkin, and K. D. Choquette, 'Planar photonic crystal vertical-cavity surface-emitting lasers,' IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 4900107-4900107, Jul.-Aug. 2013.
[30] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, 'Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,' IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810-1824, Oct. 1997.
[31] M. Xun, C. Xu, Y. Xie, J. Deng, K. Xu, and H. Chen, 'Modal properties of 2-D implant-defined coherently coupled vertical-cavity surface-emitting laser array,' IEEE J. Quantum Electron., vol. 51, no. 1, pp. 1-6, Jan. 2015.
[32] M. Xun, C. Xu, J. Deng, Y. Xie, G. Jiang, J. Wang, K. Xu, and H. Chen, 'Wide operation range in-phase coherently coupled vertical cavity surface emitting laser array based on proton implantation,' Opt. Lett., vol. 40, no. 10, pp. 2349-2352, May 2015.
[33] K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, 'Single mode photonic crystal vertical cavity surface emitting lasers,' Advances in Optical Technologies, vol. 2012, Mar. 2012.
[34] H. J. Unold, S. Mahmoud, R. Jager, M. Kicherer, M. Riedl, and K. J. Ebeling, 'Improving single-mode VCSEL performance by introducing a long monolithic cavity,' IEEE Photonics Technol. Lett., vol. 12, no. 8, pp. 939-941, Aug. 2000.
[35] J. E. Cunningham, D. K. McElfresh, L. D. Lopez, D. Vacar, and A. V. Krishnamoorthy, 'Scaling vertical-cavity surface-emitting laser reliability for petascale systems,' Appl. Opt., vol. 45, no. 25, pp. 6342-6348, Sep. 2006.
[36] J. T. Blane J. T. Blane, W. K. North, P. R. Zeidler, J. B. Dencker, D. B. Chacko, B. Souhan, K. A. Ingold, and J. J. Raftery, 'Beam quality study for single-mode oxide-confined and photonic crystal VCSELs,' in Vertical-Cavity Surface-Emitting Lasers XX, 2016, vol. 9766: International Society for Optics and Photonics, p. 97660I.
[37] H. Dave, S. T. Fryslie, J. E. Schutt-Ainé, and K. D. Choquette, 'Modulation enhancements for photonic crystal VCSELs,' in Vertical-Cavity Surface-Emitting Lasers XXI, 2017, vol. 10122: International Society for Optics and Photonics, p. 1012207.
[38] S. Fryslie, N. Denardo, and K. D. Choquette, 'Single mode photonic crystal vertical cavity lasers for improved modulation bandwidth distance product,' in CLEO: Science and Innovations, 2016: Optical Society of America, p. SF1L. 8.
[39] P. O. Leisher, J. D. Sulkin, and K. D. Choquette, “Parametric study of proton-implanted photonic crystal vertical-cavity surface-emitting lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, pp. 1290–1294, Sep.–Oct. 2007.
[40] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, 'Error-free transmission over 1-km OM4 multimode fiber at 25 Gb/s using a single mode photonic crystal vertical-cavity surface-emitting laser,' IEEE Photonics Technol. Lett., vol. 25, no. 18, pp. 1823-1825, Sep. 2013.
[41] D. M. Kuchta et al., “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett., vol. 27, no. 6, pp. 577–580, Mar. 2015.
[42] K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, '70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL,' J. Lightw. Technol., vol. 33, no. 7, pp. 1395-1401, Apr. 2015.
[43] J. Lavrencik, V. A. Thomas, S. Varughese, and S. E. Ralph, “DSP-enabled 100 Gb/s PAM-4 VCSEL MMF links,” J. Lightw. Technol., vol. 35, no. 15, pp. 3188–3196, Aug. 2017.
[44] F. Xiong, 'M-ary amplitude shift keying OFDM system,' IEEE Trans. Commun., vol. 51, no. 10, pp. 1638-1642, Oct. 2003.
[45] C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, 'Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,' IEEE J. Quantum Electron., vol. 53, no. 4, Aug. 2017, Art. no. 2400608.
[46] H.-Y. Kao, C.-T. Tsai, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, H.-Y. Wang, C.-H. Cheng, W.-L. Wu, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, 'Long-Term Thermal Stability of Single-Mode VCSEL Under 96-Gbit/s OFDM Transmission,' Opt. Express, vol. 25, no. 6, pp. 1-9, Nov.-Dec. 2019.
[47] H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-H. Lin, 'Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission,' Opt Express, vol. 25, no. 14, pp. 16347-16363, Jul. 2017.
[48] W.-L. Wu, C.-Y. Huang, H.-Y. Wang, Y.-H. Lin, C.-H. Wu, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, M. Feng, and G.-R. Lin, 'VCSEL with bi-layer oxidized aperture enables 140-Gbit/s OFDM Transmission over 100-m-long OM5 MMF,' in Optical Fiber Communication Conference, 2019: Optical Society of America, p. Tu3A. 3
[49] C. Kottke, C. Caspar, V. Jungnickel, R. Freund, M. Agustin, and N. N. Ledentsov, “High speed 160 Gb/s DMT VCSEL transmission using preequalization,” in Proc. Int. Conf. Opt. Fiber Commun., Los Angeles, CA, USA, Mar. 2017, Paper W4I.7.
[50] D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, 'Techno-economic comparison of silicon photonics and multimode VCSELs,' J. Lightw. Technol., vol. 34, no. 2, pp. 233-242, Jan. 2016
[51] T.-T. Shih, P.-H. Tseng, Y.-Y. Lai, and W.-H. Cheng, 'A 25 Gbit/s Transmitter Optical Sub-Assembly Package Employing Cost-Effective TO-CAN Materials and Processes,' J. Lightw. Technol., vol. 30, pp. 834-840, Mar. 2012.
[52] T.-T. Shih, et al., Cheng, 'Efficient Heat Dissipation of Uncooled 400-Gbps (16×25-Gbps) Optical Transceiver Employing Multimode VCSEL and PD Arrays,' Sci. Rep., vol. 7, no. 46608, Apr. 2017.
[53] M. E. Belkin, L. Belkin, A. Loparev, A. S. Sigov, and V. lakovlev, 'Long Wavelength VCSELs and VCSEL-Based Processing of Microwave Signals,' // In book “Optoelectronics – Advanced Materials and Devices”, Ed. by S. Pyshkin and J. Ballato, – InTech, Croatia, chapter 6, pp. 231-250, 2015. Online: http://www.intechopen.com/books/optoelectronics-materials-anddevices/long-wavelength-vcsels-and-vcsel-based-processing-of-microwave-signals
[54] W. Kobayashi, T. Tadokoro, T. Fujisawa, N. Fujisawa, T. Yamanaka, and F. Kano, '40-Gbps Direct Modulation of 1.3-m InGaAlAs DFB Laser in Compact TO-CAN Package,' presented at the Optical Fiber Communication Conf., 2011, paper, OWD2.
[55] T. Saito, T. Yamatoya, Y. Morita, E. Ishimura, C. Watatani, T. Aoyagi, and T. Ishikawa, 'Clear eye opening 1.3m-25/43 Gbps EML with novel tensile-strained asymmetric QW absorption layer, presented at the 35th Eur. Conf. opt. commun., Vienna, Austria, 2009, pp. 1-2
[56] J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, 'Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,' Nature Photon., vol. 2, no. 7 pp. 433-437, May 2008.
[57] K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka., 'Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers,' IEEE Photon. Technol. Lett., vol. 27, no. 15, pp. 534–536, Mar. 2015.
[58] T. Fujisawa, K. Takahata, W. Kobayashi, T. Tadokoro, N. Fujisawa, S. Kanazawa, and F. Kano, '1.3-μm, 50-Gbit/s EADFB Lasers for 400GbE,' presented at Optical Fiber Communication Conf. (OFC/NFOEC), 2011, paper, OWD4.
[59] U. Troppenz et al., “1.3 μm electroabsorption modulated lasers for PAM4/PAM8 single channel 100 Gb/s,” in Proc. Indium Phosphide Related Mater. Int. Conf., Montpellier, France, 2014, paper Th-B2-5.
[60] T. Fujisawa, K. Takahata, W. Kobayashi, T. Tadokoro, N. Fujisawa, S. Kanazawa, and F. Kano, '1.3-μm, 50-Gbit/s EADFB Lasers for 400GbE,' presented at Optical Fiber Communication Conf. (OFC/NFOEC), 2011, paper, OWD4.
[61] W. Kobayashi, T. Fujisawa, T. Ito, S. Kanazawa, Y. Ueda, and H. Sanjoh, 'Advantages of EADFB laser for 25 GBaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fibre transmission,” Electron. Lett., vol. 50, no. 9, May 2014.
[62] C.-Y. Huang, H.-Y. Wang, C.-H. Wu, C.-H. Cheng, C.-T. Tsai, C.-H. Wu, M. Feng, and G.-R. Lin, 'Comparison of high-speed PAM4 and QAM-OFDM data transmission using single-mode VCSEL in OM5 and OM4 MMF links,' IEEE J. Sel. Top. Quantum Electron., Mar. 2019. DOI: 10.1109/JSTQE.2019.2903754
[63] S. Kanazawa, T. Fujisawa, K. Takahata, T. Ito, Y. Ueda, W. Kobayashi, H. Ishii, and H. Sanjoh, 'Flip-Chip Interconnection Lumped-Electrode EADFB Laser for 100-Gb/s/λ Transmitter,' Photon. Technol. Lett., vol. 27, no.16, Aug. 2015.
[64] H.-Y. Kao, et al., 'CWDM DFBLD Transmitter Module for 10-km Interdata Center With Single-Channel 50-Gbit/s PAM-4 and 62-Gbit/s QAM-OFDM,' J. Lightw. Technol., vol. 34, no. 3, Feb. 2018.
[65] Z. Zhou, B. Yan, X. Ma, D. Teng, L. Liu, and G. Wang, “GaN-based mid-power flip-chip light-emitting diode with high −3  dB bandwidth for visible light communications,” Appl. Opt., vol.57, no.11, Apr. 2018.
[66] W. Yang et al., “Size-dependent capacitance study on InGaN-based micro-light-emitting diodes,” J. Appl. Phys., vol. 116, no. 4, p. 44512, Jul. 2014.
[67] H. Y. Lan, I. C. Tseng, H. Y. Kao, Y. H. Lin, G. R. Lin, and C. H. Wu, “752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes,” IEEE J. Quantum Electron., vol. 54, no. 5, Oct. 2018, Art. no. 3300106.
[68] Series G: Transmission systems and media, digital systems and networks, http://www.certificate.net/Portals/1/Standards/ITU/g-107.doc
[69] J. Armstrong, “OFDM for optical communications,” J. Lightw. Technol., vol. 27, no. 3, pp. 189–204, Feb. 2009.
[70] D. Wulich, “Definition of efficient PAPR in OFDM,” IEEE Commun. Lett., vol. 9, no. 9, pp. 832–834, Sep. 2005.
[71] A. R. S. Bahai, M. Singh, A. J. Goldsmith, and B. R. Saltzberg, “A new approach for evaluating clipping distortion in multicarrier systems,” IEEE J. Select. Areas Commun., vol. 20, pp. 3–12, May 2002.
[72] T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue laser diode enables underwater communication at 12.4 Gbps,” Sci. Rep., vol. 7, 40480, 2017.
[73] W. C. Wang, H. Y. Wang, and G. R. Lin, “Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s,” Sci. Rep., vol. 8, 2018, Art. no. 13142.
[74] Y.-F. Huang et al., “Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m,” Sci. Rep., vol. 7, Sep. 2017, Art. no. 10478.
[75] B. G. Griffin, A. Arbabi, M. P. Tan, A. M. Kasten, K. D. Choquette, and L. L. Goddard, 'Demonstration of enhanced side-mode suppression inmetal-filled photonic crystal vertical cavity lasers,' Opt. Lett. vol. 38, no. 11, pp. 1936-1938, Jun. 2013.
[76] N. Yokouchi, A. J. Danner, and K. D. Choquette, 'Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers,' IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 5, pp. 1439-1445, Sep-Oct 2003.
[77] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012.
[78] H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, and Y.-H. Lee, 'Characteristics of modified single-defect two-dimensional photonic crystal lasers,' IEEE J. Quantum Electron., vol. 38, no. 10, pp. 1353-1365, Oct. 2002.
[79] Y. Zhang, , M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, 'Photonic crystal nanobeam lasers,' Appl. Phys. Lett., vol. 97, no. 5, p. 051104, Aug. 2010.
[80] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, 'Impact of photon lifetime on high-speed VCSEL performance,' IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 6, pp. 1603-1613, Nov.-Dec. 2011.
[81] H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, 'Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,' IEEE J. Quantum Electron., vol. 53, no. 5, Oct. 2017, Art. no. 8000408.
[82] E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh, and A. Larsson, 'Reducing the spectral width of high speed oxide confined VCSELs using an integrated mode filter,' in Vertical-Cavity Surface-Emitting Lasers XVI, 2012, vol. 8276: International Society for Optics and Photonics, p. 82760L.
[83] P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, 'High-speed, low-current-density 850 nm VCSELs,' IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 694-703, May-Jun. 2009.
[84] D. J. Law, W. W. Diab, A. Healey, S. B. Carlson, and V. F. Maguire. (Jul. 2012). IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment. IEEE 802.3 Ethernet Working Group, San Diego, CA, USA, Tech. Rep. [Online]. Available: http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf
[85] T. Chen, B. Zhao, L. Eng, Y. Zhuang, J. O'brien, and A. Yariv, 'Very high modulation efficiency of ultralow threshold current single quantum well InGaAs lasers,' Electron. Lett., vol. 29, no. 17, pp. 1525-1526, Aug. 1993.
[86] H.-Y. Kao, C.-T. Tsai, Y.-C. Chi , C.-Y. Peng, S.-F. Leong, H.-Y. Wang , C.-H. Cheng, W.-L. Wu, H.-C. Kuo, W.-H. Cheng, G.-R. Lin, and C.-H. Wu, “High-temperature insensitivity of 50 Gb/s 16-QAMDMT transmission by using temperature-compensated vertical-cavity surface-emitting lasers,” J. Lightw. Technol., vol. 36, no. 16, pp. 3332–3343, Aug. 2018
[87] E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, 'Strong optical injection-locked semiconductor lasers demonstrating> 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,' Opt. Express, vol. 16, no. 9, pp. 6609-6618, Apr. 2008.
[88] P. V. Mena, J. Morikuni, S.-M. Kang, A. Harton, and K. Wyatt, 'A simple rate-equation-based thermal VCSEL model,' J. Lightw. Technol., vol. 17, no. 5, p. 865, May 1999.
[89] Y. Sun, 'Recent advances for high speed short reach optical interconnects for Datacom links'. 2017 IEEE CPMT Symp. Japan (ISSJ), Kyoto, Japan, Nov. 2017, p. 63-65
[90] Y. Sun, R. Lingle, R. Shubochkin, A. H. McCurdy, K. Balemarthy, D. Braganza, J. Kamino, T. Gray, W. Fan, K. Wade, F. Chang, D. Gazula, G. Landry, J. Tatum, and S. Bhoja, 'SWDM PAM4 transmission over next generation wideband multimode optical fiber,' J. Lightw. Technol., vol. 35, pp. 690–697, Feb. 2017.
[91] H.-Y. Kao, C.-T. Tsai, C.-Y. Pong, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J. J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, 'Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,' Photonics Res., vol. 5, no. 5, pp. 507-515, Oct 1 2017.
[92] W. Miao, H. de Waardt, R. van der Linden, and N. Calabretta, 'Assessment of scalable and fast 1310-nm optical switch for high-capacity data center networks,' IEEE Photon. Technol. Lett., vol. 29, no. 1, pp. 98–101, Jan. 2017.
[93] M. Chagnon, M. Morsy-Osman, M. Poulin, C. Paquet, S. Lessard, and D. V. Plant, 'Experimental parametric study of a silicon photonic modulator enabled 112-Gb/s PAM transmission system with a DAC and ADC,' J. Lightw. Technol., vol. 33, no. 7, pp. 1380–1387, Apr. 2015.
[94] R. Motaghiannezam, T. Phan, A. Chen, T. Du, C. Kocot, J. Xu, and B. Huebner, '52 Gbps PAM4 receiver sensitivity study for 400GBase-LR8 system using directly modulated laser,' Opt. Express, vol. 24, no. 7, pp. 7374–7380, Mar. 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/74420-
dc.description.abstract為了符合資料傳輸的快速發展需求,例如雲端計算、高畫質的社群影音平台和人工智慧,資料中心提供一個獲得高速且高容量資料傳輸的解決方法。光源選擇垂直共振腔面射型雷射(VCSEL)和分佈反饋式雷射(DFBLD)應用於短距離和長距離資料中心,且選擇的高速資料傳輸格式分別有開關鍵控調變(OOK)、四階脈衝強度調變(PAM-4)及正交幅度調制(QAM)正交分頻多工(OFDM)。另一方面,可見光通訊也能夠應用在資料中心內部機架間(inter-racks)的無線傳輸,可利用發光二極體建立一個新穎的小型無線傳輸資料中心。
對於可見光傳輸應用中,實現不同平台(mesa)大小的光子晶體微發光二極體(PhC-μLED)的綜合比較。在平台120 μm長的PhC-μLED擁有最大580W的光功率和外部量子效率,但也表現出最低72 MHz的3-dB調變頻寬。相反的,平台20-μm長的PhC-μLED光功率只有37 μW但擁有最高162 MHz的3-dB調變頻寬。在經過優化後,考慮光功率與類比頻寬之間的取捨將影響傳輸表現。因此PhC-μLED在60/80-μm長的平台採用OOK訊號格式且利用預補償技術皆能夠達到500 Mbit/s的傳輸容量(誤碼率<10^-12)。PhC-μLED 有著80-μm長的平台能載300-MBaud PAM-4訊號有著600 Mbit/s傳輸容量達到KP4前項錯誤更正規範。更進一步,PhC-μLED 有著60-μm長的平台利用16-QAM OFDM傳輸譨夠達到2 Gbit/s。
在短距離資料中心應用,比較質子佈植VCSEL有著不同的光子晶體設計的基本特性和經過100-m OM5多模光纖傳輸QAM-OFDM訊號。根據在纖芯(core)和纖殼(cladding)有著不同週期和孔徑大小,這些設計可以命名為Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2/Corephc1+Cladphc1/Corephc1-reduce+Cladphc1/Corephc1+Cladflat。Corephc1表示在core中有一週期光子晶體、Coreflat表示在core中無光子晶體、Corephc1-reduce在core中有一週期光子晶體且減少光子晶體孔徑、Cladphc2表示在cladding中有兩週期光子晶體,以此類推。首先Coreflat+Cladflat VCSEL 有著最高閥值電流和大的發光孔徑展現出最高0.11的外部量子效率和2 mW的光功率。而Coreflat+Cladphc2 VCSEL在cladding有著兩週期光子晶體顯示最低2 mA的閥值電流、最高15 GHz的3-dB類比頻寬和最低-143 dB/GHz的相對強度雜訊。而Corephc1+Cladphc2 VCSEL為core增加一週期的光子晶體和cladding增加兩週期的光子晶體在光譜上展現單模,傳輸多模光纖時能夠抑制模態色散(modal dispersion)。訊號傳輸經過優化後,Coreflat+Cladphc2 VCSEL傳輸16-QAM-OFDM訊號在背對背情況下能夠達到最高的18-GHz頻寬。在經過100-m OM5多模光纖,Coreflat+Cladphc2 和Corephc1+Cladphc2 VCSEL利用預失真(pre-leveling)技術傳輸16-QAM OFDM皆能夠達到60-Gbit/s的傳輸容量。其中Corephc1+Cladphc2能夠抑制模態色散,所以在傳輸100-m多模光纖後仍與背對背傳輸容量相同。為了更進一步提高傳輸容量,利用了位元分配(bit-loading)適當地分配QAM給OFDM子載波。因此Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 PhC-VCSEL在背對背和經過100-m多模光纖情況下分別可以進一步提高傳輸容量到60.7/85/65和58.5/80.4/63.8 Gbit/s。
為了延長資料中心間的傳輸距離,選擇DFBLD搭配電致吸收調變器(EAM)利用PAM-4傳輸格式和預補償技術實現104-Gbit的傳輸容量。EAM/DFBLD發射器擁有-1.5 dBm的平均功率、出色的53 dB側模抑制比(SMSR)、25-GHz的類比頻寬和-140 dBc/Hz的相對強度雜訊。此外光接收元件也展現出30-GHz的類比頻寬。在OOK傳輸部分,電致吸收調變雷射(EML)和光接收次模組(ROSA)在背對背、2-km和10-km單模光纖傳輸情況下分別實現62、60、54 Gbit/s傳輸容量且達到無差錯標準(誤碼率<10-12)。另外,EML和ROSA在54-Gbit OOK訊號下傳輸2-/10-km單模光纖的接收功率靈敏度(sensitivity)和功率懲罰(power penalty)分別為-6.43/-6.26 dBm和0.07/0.24 dB。為了有效利用元件的頻寬限制,EML和ROSA採用PAM-4訊號格式在背對背和經過2-km單模光纖的情況下提高傳輸速率至104-Gbit/s且達到前項錯誤更正碼標準。1306-nm EML的窄線寬、高調變類比頻寬和低相對強度雜訊經過10-km公里單模光纖並傳輸預補償的48-GBaud PAM-4訊號因為低色散顯示出低的0.25 dB power penalty且符合前項錯誤更正碼標準。
zh_TW
dc.description.abstractTo achieve the demand of rapid development in data transmission such as cloud computing, the high-quality video/audio data streaming of social networking platform and artificial intelligence, the data center provides one of solutions for obtaining high-speed and high-capacity data transmission. The high speed data format demonstrates for short- and long reach data center application with the non-return zero on-off keying (NRZ-OOK), 4-level pulse amplitude modulation (PAM-4) and 16-quadrature amplitude modulation orthogonal frequency division multiplexing (16-QAM OFDM) by vertical cavity surface emitting laser (VCSEL) and distributed feedback laser diode (DFBLD). On the other hands, the visible light communication is employed to establish an inter-rack wireless network for a novel wireless small-world data center by Light-emitting diode (LED).
For high-speed visible light communication transmission application, a comprehensive comparison on the different mesa sizes of photonic crystal micro light-emitting diode (PhC-μLED) is realized. The PhC-μLED with the length of 120 μm exhibits the largest optical power of 580 μW with the highest external quantum efficiency but demonstrates the lowest 3-dB analog bandwidth of 72 MHz. By contrast, the PhC-μLED with the length of 20 μm with lowest optical power of 37 μW provides the highest 3-dB analog bandwidth of 162 MHz. After optimization, the trade-off between optical power and analog bandwidth is considered to affect performance of transmission. The PhC-μLED with mesa lengths of 60/80 μm can transmit on-off keying (OOK) data format at 500 Mbit/s with error free criterion. The device with a mesa length of 80 μm carries the 300-Mbuad PAM-4 data with the corresponding raw data rate of 600 Mbit/s for the qualified KP4-forward error correction (FEC) specification. Furthermore, the 16-QAM-OFDM transmission is employed to achieve the highest data rate of 2 Gbit/s under FEC standard for the device with mesa length of 60 μm.
The proton-implant VCSEL with different photonic crystal designs are compared to transmit the 16-QAM-OFDM data over 100-m OM5 multimode fiber (MMF). The designs use flat core/cladding (indicating Coreflat/Cladflat) and/or PhC core/cladding (denoting Corephc/Cladphc). According to different periods and hole diameter in the core or cladding region, the designs of the photonic crystal are termed Coreflat+Cladflat, Coreflat+Cladphc2, Corephc1+Cladphc2, Corephc1+Cladphc1, Corephc1-reduce+Cladphc1 and Corephc1+Cladflat. The Coreflat+Cladflat VCSEL with highest threshold current and large emission aperture exhibits highest the differential quantum efficiency of 0.11 and output power of 2 mW. The Coreflat+Cladphc2 VCSEL with two periods of photonic crystal in the cladding reveals lowest threshold current of 2 mA, the highest 3-dB frequency bandwidth of 15 dB and lowest relative intensity background noise of -143 dB/GHz. The Corephc1+Cladphc2 VCSEL with additionally adding 1 period of photonic crystal in the core and 2 periods of photonic crystal in the cladding possesses optical spectra of single fundamental mode to suppress the modal dispersion after propagating MMF. After optimization, the Coreflat+Cladphc2 VCSEL chip can achieve the OFDM transmission with the highest bandwidth of 18 GHz in BtB case to meet the forward error correction (FEC) criterion. After propagating through 100-m OM5-MMF with the pre-leveled 16-QAM OFDM data, the Corephc1+Cladphc2 VCSEL with nearly modal-dispersion free still keep the same transmission bit rate of 60 Gbit/s with in the BtB condition. The bit-loading technique is used to allocate suitable QAM level for OFDM subcarriers at different frequency regions, so the Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 PhC-VCSEL can improve the data rate to 60.7/85/65 and 58.5/80.4/63.8 Gbit/s under BtB and 100-m MMF condition, respectively.
High-speed transmitter composed of electro-absorption modulator (EAM) and DFBLD at 1306 nm is demonstrated to carry the 104-Gbit/s PAM-4 data by using a pre-emphasized technique for intra- and inter-data center application. The EAM/DFBLD transmitter offers an average power of -1.5 dBm, an excellent side mode suppression ratio of 53 dB, an analog bandwidth of 25 GHz and a relative intensity noise of -140 dBc/Hz. In addition, the receiver module also exhibits the 30-GHz modulation bandwidth. For on-off keying data, the electro-absorption modulated laser (EML) and receiver optical sub-assembly (ROSA) support the highest transmission capacities of 62, 60 and 54 Gbit/s to meet the error-free criterion (BER<10-12) through BtB, 2- and 10-km single mode fiber (SMF), respectively. In addition, the receiving power sensitivity and power penalty are evaluated as -6.43/-6.26 dBm and 0.07/0.24 dB at 54-Gbit/s OOK data transmission after 2-/10-km SMF propagation. To efficiently employ the limited bandwidth, the data rate of PAM-4 data format is increased to 104 Gbit/s per channel under forward error correction (FEC) criterion at BtB condition. After delivering 2-km SMF, the allowable Baud rate can maintain at 52-GBaud (104 Gbit/s). The narrow-linewidth, high modulation bandwidth and low relative intensity noise of the EML at 1306 nm indicate a low power penalty of 0.25 dB at pre-emphasized 48-Gbaud PAM-4 after propagating 10-km SMF due to the extremely low chromatic dispersion.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:34:49Z (GMT). No. of bitstreams: 1
ntu-108-R05941126-1.pdf: 15617750 bytes, checksum: bab9ba5dea861014805b2b8d6adc2b1b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Overview of data-center application 1
1.2 Motivation 2
1.2.1 μLED for optical transmission link 2
1.2.2 850-nm VCSEL with photonic crystal structure for optical transmission link 3
1.2.3 1310-nm DFBLD for optical transmission link 6
1.3 Thesis architecture 7
Chapter 2 Comparison of five sizes for photonic crystal blue μLED in the analysis of visible light communication 9
2.1 Introduction 9
2.2 Design and characteristic of PhC-μLED 9
2.2.1 Device structure 9
2.2.2 Basic characteristic of PhC-μLED 10
2.3 Transmission Setup and Waveform Synthesis of Data 14
2.3.1 Experimental setup of transmission communication system 14
2.3.2 Data waveform synthesis of OOK, PAM-4 and 16-QAM-OFDM and pre-emphasis principle 15
2.4 Transmission performance of PhC-μLED 16
2.4.1 OOK transmission performance of PhC-μLED 16
2.4.2 PAM-4 transmission performance of PhC-μLED 18
2.4.3 16-QAM OFDM transmission performance of PhC-μLED 20
2.5 Summary 27
Chapter 3 Comparison of different photonic crystal Vertical-Cavity-Surface-Emitting Lasers based on QAM-OFDM data link 29
3.1 Introduction 29
3.2 Fabrication and design of the PhC-VCSEL 29
3.3 Characteristic of the different PhC-VCSEL 32
3.3.1 Comparison of L-I curve 32
3.3.2 Comparison of I-V curve 36
3.3.3 Comparison of optical spectrum 38
3.3.4 Comparison of frequency response 41
3.3.5 RIN of the Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 VCSEL 44
3.4 Experimental setup of the 16-QAM OFDM modulation 46
3.4.1 QAM-OFDM data transmission setup and analysis 46
3.4.2 Comparison of received 16-QAM OFDM data with 15 GHz bandwidth from different commercial photodetector 48
3.5 High-speed data transmission on the Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 VCSEL through BtB and 100-m OM5-MMF 50
3.5.1 16-QAM OFDM transmission of the Coreflat+Cladflat/Coreflat+Cladphc2/Corephc1+Cladphc2 VCSEL over BtB 50
3.5.2 16-QAM OFDM transmission over 100-m OM5-MMF 54
3.5.3 16-QAM OFDM transmission with pre-leveling technique 56
3.5.4 QAM-OFDM transmission with bit-loading technique 61
3.6 Summary 64
Chapter 4 Demonstration of 100-Gbit/s/λ based on EML Transmitter Module and Receiver module for data center networks 67
4.1 Introduction 67
4.2 Basic characteristics of EAM+DFBLD transmitter 67
4.3 Setup of EML and ROSA module for OOK and PAM-4 Transmission over 2- and 10-km SMF 69
4.4 Result and discussion of 1310-nm EML for OOK and PAM-4 transmission over 2-, 10-km SMF 71
4.4.1 Comparison of transmission performance without and with pre-emphasis technique 71
4.4.2 62-, 60 and 54 Gbit/s data transmission for the OOK data through BtB, 2- and 10-km SMF 74
4.4.3 102-, 102 and 96 Gbit/s data transmission for the PAM-4 data through BtB, 2- and 10-km SMF 75
4.4.4 Receiving power of DFBLD+EAM at 54-Gbit/s OOK and 48 GBaud PAM-4 through BtB, 2-km and 10-km SMF 77
4.5 Summary 78
Chapter 5 Conclusion 81
REFERENCE 84
作者簡介 97
期刊論文與研討會論投稿及發表紀錄 98
dc.language.isoen
dc.subject資料中心zh_TW
dc.subject垂直共振腔面射型雷射zh_TW
dc.subject分佈反饋式雷射zh_TW
dc.subject發光二極體zh_TW
dc.subject關鍵控調變zh_TW
dc.subject四階脈衝強度調變zh_TW
dc.subject正交幅度調制zh_TW
dc.subject正交分頻多工zh_TW
dc.subject可見光通訊zh_TW
dc.subjectquadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM)en
dc.subjectdata centeren
dc.subjectvertical cavity surface emitting laser (VCSEL)en
dc.subjectdistributed feedback laser diode (DFBLD)en
dc.subjectElectro-absorption modulator (EAM)en
dc.subjectmicro light-emitting diode (LED)en
dc.subjectphotonic crystalen
dc.subjectnon-return zero on-off keying (NRZ-OOK)en
dc.subject4-level pulse amplitude modulation (PAM-4)en
dc.title高速資料中心用面射型與分佈反饋型雷射數據傳輸光源性能分析zh_TW
dc.titlePerformance Analysis of High-speed VCSEL and DFBLD-EAM Transmitters for Data Centersen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),吳肇欣(Chao-Hsin Wu),郭浩中(Hao-Chung Kuo)
dc.subject.keyword資料中心,垂直共振腔面射型雷射,分佈反饋式雷射,發光二極體,關鍵控調變,四階脈衝強度調變,正交幅度調制,正交分頻多工,可見光通訊,zh_TW
dc.subject.keyworddata center,vertical cavity surface emitting laser (VCSEL),distributed feedback laser diode (DFBLD),Electro-absorption modulator (EAM),micro light-emitting diode (LED),non-return zero on-off keying (NRZ-OOK),4-level pulse amplitude modulation (PAM-4),quadrature amplitude modulation orthogonal frequency division multiplexing (QAM-OFDM),photonic crystal,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201902852
dc.rights.note有償授權
dc.date.accepted2019-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
15.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved