Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7399
標題: 在即時競標中使用設限資料預測可獲勝的價格
Predicting Winning Price in Real Time Bidding with Censored Data
作者: Wush Chi-Hsuan Wu
吳齊軒
指導教授: 陳銘憲
關鍵字: 網路廣告,即時競標,機器學習,深度學習,
Online Advertising,Real-Time Bidding,Machine Learning,Deep Learning,
出版年 : 2019
學位: 博士
摘要: Real-Time Bidding is currently the most popular ad auction process for online advertising.
In this study, we study how to predict the winning price of each bid from the aspect of a bidder by leveraging the machine learning and statistical methods on the bidding history.
A major challenge is that the real winning price is not observed by the bidder after losing.
We propose to utilize the idea from censored regression model, which is widely used in the survival analysis and econometrics, to derive the loss for the losing data.
Moreover, the assumption of the censored regression is violated in the real data, so we propose a model which uses the winning rate prediction to mitigate the impact of violation.
It is named as the mixture model.
Furthermore, We generalize the winning price model to incorporate the deep learning models with different distributions and propose an algorithm to learn from the historical bidding information, where the winning price are either observed or partially observed.
We study if the successful deep learning models of the click-through rate can enhance the prediction of the winning price or not.
We also study how different distributions of winning price can affect the learning results.
Experiment results show that the censored regression usually outperforms the linear regression and the proposed averaged model always outperforms the linear regression.
Experiment results also show that the deep learning models indeed boost the prediction quality when they are learned on the historical observed data.
In addition, the deep learning models on the unobserved data are improved after learning from the censored data.
Finally, we study the combination of the mixture model and the deep learning model.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7399
DOI: 10.6342/NTU201900270
全文授權: 同意授權(全球公開)
電子全文公開日期: 2024-01-30
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf679.35 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved