Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲
dc.contributor.authorWush Chi-Hsuan Wuen
dc.contributor.author吳齊軒zh_TW
dc.date.accessioned2021-05-19T17:42:52Z-
dc.date.available2024-01-30
dc.date.available2021-05-19T17:42:52Z-
dc.date.copyright2019-01-30
dc.date.issued2019
dc.date.submitted2019-01-29
dc.identifier.citation[1] J. Aldrich. R.a. fisher and the making of maximum likelihood 1912-1922. Statist. Sci., 12(3):162–176, 09 1997.
[2] L. M. Ausubel and P. Milgrom. The lovely but lonely vickrey auction. In Combinatorial Auctions, chapter 1. MIT Press, 2006.
[3] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208, Sept. 1995.
[4] O. Chapelle. Modeling delayed feedback in display advertising. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 1097–1105, New York, NY, USA, 2014. ACM.
[5] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, and H. Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS, pages 7–10, New York, NY, USA, 2016. ACM.
[6] Y. Cui, R. Zhang, W. Li, and J. Mao. Bid landscape forecasting in online ad exchange marketplace. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 265–273, New York, NY, USA, 2011. ACM.
[7] A. Ghosh, B. I. Rubinstein, S. Vassilvitskii, and M. Zinkevich. Adaptive bidding for display advertising. In Proceedings of the 18th International Conference on World Wide Web, WWW ’09, pages 251–260, New York, NY, USA, 2009. ACM.
[8] Google. The arrival of real-time bidding. 2011.
[9] E. J. Gumbel. Statistics of extremes. Columbia University Press, New York, 1958.
[10] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Q. Candela. Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD 2014, August 24, 2014, New York City, New York, USA, pages 1–9, 2014.
[11] Internet Advertising Bureau. IAB Internet Advertising Revenue Report 2013 first six month’s results. Technical report, Internet Advertising Bureau, 2013.
[12] J. Klein and M. Moeschberger. Survival Analysis: Techniques for Censored and Truncated Data. Statistics for Biology and Health. Springer, 2003.
[13] C.-C. Lin, K.-T. Chuang, W. C.-H. Wu, and M.-S. Chen. Combining powers of two predictors in optimizing real-time bidding strategy under constrained budget. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16, pages 2143–2148, New York, NY, USA, 2016. ACM.
[14] W. Schnedler. Likelihood estimation for censored random vectors. Working Papers 0417, University of Heidelberg, Department of Economics, Feb. 2005.
[15] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of Finance, 16(1):8–37, 1961.
[16] J. Wang, S. Shen, and S. Seljan. Real-time bidding: A new frontier of computational advertising research. Workshop in CIKM, 11 2013.
[17] R. Wang, B. Fu, G. Fu, and M. Wang. Deep & cross network for ad click predictions. In Proceedings of the ADKDD’17, ADKDD, pages 12:1–12:7, New York, NY, USA, 2017. ACM.
[18] Y. Wang, K. Ren, W. Zhang, J. Wang, and Y. Yu. Functional bid landscape forecasting for display advertising. In P. Frasconi, N. Landwehr, G. Manco, and J. Vreeken, editors, ECML/PKDD (1), volume 9851 of Lecture Notes in Computer Science, pages 115–131. Springer, 2016.
[19] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 1113–1120, New York, NY, USA, 2009. ACM.
[20] W. Wu, M.-Y. Yeh, and M.-S. Chen. Deep censored learning of the winning price in the real time bidding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 2526–2535, New York, NY, USA, 2018. ACM.
[21] W. C.-H. Wu, M.-Y. Yeh, and M.-S. Chen. Predicting winning price in real time bidding with censored data. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1305–1314, New York, NY, USA, 2015. ACM.
[22] S. Yuan, J. Wang, and X. Zhao. Real-time bidding for online advertising: Measurement and analysis. CoRR, abs/1306.6542, 2013.
[23] M. D. Zeiler. Adadelta: An adaptive learning rate method. CoRR, abs/1212.5701, 2012.
[24] W. Zhang, S. Yuan, and J. Wang. Optimal real-time bidding for display advertising. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages 1077–1086, New York, NY, USA, 2014. ACM.
[25] W. Zhang, S. Yuan, J. Wang, and X. Shen. Real-time bidding benchmarking with ipinyou dataset. arXiv preprint arXiv:1407.7073, 2014.
[26] W. Y. Zhu, W. Y. Shih, Y. H. Lee, W. C. Peng, and J. L. Huang. A gamma-based regression for winning price estimation in real-time bidding advertising. In 2017 IEEE International Conference on Big Data (Big Data), pages 1610–1619, Dec 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7399-
dc.description.abstractReal-Time Bidding is currently the most popular ad auction process for online advertising.
In this study, we study how to predict the winning price of each bid from the aspect of a bidder by leveraging the machine learning and statistical methods on the bidding history.
A major challenge is that the real winning price is not observed by the bidder after losing.
We propose to utilize the idea from censored regression model, which is widely used in the survival analysis and econometrics, to derive the loss for the losing data.
Moreover, the assumption of the censored regression is violated in the real data, so we propose a model which uses the winning rate prediction to mitigate the impact of violation.
It is named as the mixture model.
Furthermore, We generalize the winning price model to incorporate the deep learning models with different distributions and propose an algorithm to learn from the historical bidding information, where the winning price are either observed or partially observed.
We study if the successful deep learning models of the click-through rate can enhance the prediction of the winning price or not.
We also study how different distributions of winning price can affect the learning results.
Experiment results show that the censored regression usually outperforms the linear regression and the proposed averaged model always outperforms the linear regression.
Experiment results also show that the deep learning models indeed boost the prediction quality when they are learned on the historical observed data.
In addition, the deep learning models on the unobserved data are improved after learning from the censored data.
Finally, we study the combination of the mixture model and the deep learning model.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:42:52Z (GMT). No. of bitstreams: 1
ntu-108-D01921016-1.pdf: 695653 bytes, checksum: e496ff61f2980692be8114c1db38d37a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書iii
誌謝v
摘要vii
Abstract ix
1 Introduction 1
2 The Winning Price of the RTB Display Advertising 5
3 Related Work 9
4 The Models of the Winning Price 11
4.1 Winning Price Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Generalized Winning Price Model . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Link Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Algorithm 23
6 Experiments 27
6.1 Datasets and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 The Difference Between the Winning Data and Losing Data . . . . . . . 33
xi
6.3 The Performance of the Censored Regression . . . . . . . . . . . . . . . 34
6.4 The Performance of the Mixture Model . . . . . . . . . . . . . . . . . . 34
6.5 Comparing Different Link Structures on the Winning Data . . . . . . . . 35
6.6 Comparing Different Distributions . . . . . . . . . . . . . . . . . . . . . 37
6.7 Overall Comparison of Link Structures and Distributions . . . . . . . . . 37
6.8 The Mixture Model of Generalized Winning Price Model . . . . . . . . . 38
7 Conclusion and Future Work 43
Bibliography 45
dc.language.isoen
dc.title在即時競標中使用設限資料預測可獲勝的價格zh_TW
dc.titlePredicting Winning Price in Real Time Bidding with Censored Dataen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee廖弘源,曾新穆,駱明凌,林軒田,葉彌妍
dc.subject.keyword網路廣告,即時競標,機器學習,深度學習,zh_TW
dc.subject.keywordOnline Advertising,Real-Time Bidding,Machine Learning,Deep Learning,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201900270
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-01-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2024-01-30-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf679.35 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved