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摘要

在網路廣告產業，近年來業界普遍地使用即時競標的方式來交易廣

告的播放機會。在這篇論文中，我們站在買方的立場，研究如何使用

機器學習與統計方法來從過去的交易紀錄中預測每個競標的獲勝價格。

買方在這個問題的主要挑戰是，若競標落敗後，將無法得知獲勝價格。

因此在參考倖存分析與經濟學中常用的受限迴歸模型後，我們設計出

針對落敗資料的損失函數。我們更進一步發現即時競標的資料並不符

合受限迴歸模型的假設。因此我們運用獲勝機率來設計一般迴歸與受

限迴歸的混和模型，以降低因不符假設而帶來的誤差。我們更進一步

地運用深度學習技術與多種統計分布來推廣原本的模型，並且仍然讓

模型能同時從獲勝與落敗的歷史紀錄中學習。我們研究那些在點擊率

預測中獲得成功的模型是否也能改善獲勝價格的預測。實驗結果顯示，

如果只看獲勝的資料，深度學習的模型確實改善了預測的精準度。而

深度學習模型在落敗資料上的表現，也可以透過從落敗的資料上學習

來改善。最後，我們再研究將混和模型的技術運用在深度學習的模型

上。
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Abstract

Real-Time Bidding is currently the most popular ad auction process for

online advertising. In this study, we study how to predict the winning price

of each bid from the aspect of a bidder by leveraging the machine learning

and statistical methods on the bidding history. A major challenge is that the

real winning price is not observed by the bidder after losing. We propose

to utilize the idea from censored regression model, which is widely used in

the survival analysis and econometrics, to derive the loss for the losing data.

Moreover, the assumption of the censored regression is violated in the real

data, so we propose a model which uses the winning rate prediction to miti-

gate the impact of violation. It is named as the mixture model. Furthermore,

We generalize the winning price model to incorporate the deep learning mod-

els with different distributions and propose an algorithm to learn from the

historical bidding information, where the winning price are either observed

or partially observed. We study if the successful deep learning models of the

click-through rate can enhance the prediction of the winning price or not. We

also study how different distributions of winning price can affect the learning

results. Experiment results show that the censored regression usually out-

performs the linear regression and the proposed averaged model always out-

performs the linear regression. Experiment results also show that the deep

learning models indeed boost the prediction quality when they are learned on

the historical observed data. In addition, the deep learning models on the un-

observed data are improved after learning from the censored data. Finally, we

vii



doi:10.6342/NTU201900270

study the combination of the mixture model and the deep learning model.
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Chapter 1

Introduction

The revenues of the internet advertising in the United States totaled $88.0 billion for the

full year of 2017 [11]. The programmatic advertising aggregates the audiences from dis-

parate sites and targets the relevant end users more effectively. Due to vast traffics of

ads, many applications in this field use machine learning algorithm to optimize the Key

Performance Indicator (KPI) such as the Click-Through Rate (CTR) and the ConVersion

Rate (CVR). It is undoubtedly that the programmatic advertising is a major field of applied

machine learning.

To increase the profit for publishers and reach for the advertisers, the market works

hard to decrease the term of exchanging ads frommonths to single event. Finally, the Real-

Time Bidding (RTB) becomes one of the major technology of the internet advertising [8].

In RTB display advertising, an impression, which is the opportunity to display the ad, is

sold by an auction held by the ad exchange and the advertisers bid the impression with the

help from the agents, which are called the Demand Side Platform (DSP). Currently, the

major rule of the auction is the second price auction, which is first introduced in [15]. If

the DSP bids the highest bidding price, then it wins the impression and pays the second

highest bidding price to the ad exchange. Please refer to Yuan et al. [22] or Wang et al.

[16] for more details about RTB display advertising.

There are three common paying models for the advertiser: the cost-per-mile (CPM),

cost-per-click (CPC) and cost-per-action (CPA). The advertisers pay for every impressions

in the CPM model, for every click in the CPC model and for every conversion or prede-

1
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fined actions in the CPA model. Therefore, the DSPs need to predict the expected income

of impressions according to the paying model and compute the bidding price accordingly

in real time. These are the main challenges of the DSPs.

In this dissertation, we study the prediction of the winning price, which is defined as

the lowest price to win, in the second price auction from the aspect of a certain DSP. Note

that the winning price is usually the same as the cost of winning the bid, which plays an

important role in computing the bidding price. Here is an example of the winning price.

Suppose there are four DSPs, A, B, C, and D, competing a specific impression. The bids

offered by A, B, C, and D are 50, 100, 150, and 200, respectively. Then, the winning

prices of A, B and C are all 200 because the highest price from their competitors is 200,

which is offered by D. On the other hand, the winning price of the D is 150 because the

highest price from its competitors is 150, which is from C.

Bidding the trustful value of the impression is the dominant strategy to maximize the

profit if the budget and time are both unlimited [2]. In practice, the best strategy should

consider the practical constraints, so the best strategy needs more information to compute

such as the winning rate and the cost of winning. For example, the winning rate and the

cost of winning a bid are used in Zhang et al. [25] to derive the optimal bidding strategy.

Lin et al. [13] improved the bidding strategy by incorporating the CTR predictor with a

winning price predictor.

One can model the winning price as the traditional supervised learning problem. How-

ever, Ghost et al. [7] pointed out that there is the partial observable exchange for the DSPs.

More specifically, the winning price is usually only observed by the winner of the auction.

The losers only know that the winning price is higher than their bidding price. This kind

of partially observed winning price is called censored, and is studied in many fields such

as survival analysis [12] and econometrics [14]. We call the censored bidding information

as the losing data, and the winning bidding information as the winning data.

In [21], we introduced the idea of using winning probability as the loss function to

learn the winning price from the losing data, and the mixture model which consistently

outperforms the model from the winning data only. In [20], we extended the model in two

2
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directions. The structure of the expected value can be switched to successful deep learning

models in related field such as the model proposed by Cheng et al. [5] and the model

proposed by Wang et al. [17]. The distribution of the error which is closely related to the

loss function can be switch to non-normal distribution such as log-normal distribution or

gumbel distribution.

In this dissertation, we revised the theory of the mixture model proposed by [21]. After

the revision, the new mixture model consistently outperforms the original mixture model.

Then we conduct the experiments of combining different models from [20].

The dissertation is organized as follows. Chapter 2 introduces the mechanism of the

RTB display advertising related to the winning price and the problem definition. The re-

lated works are in chapter 3. Models of the winning price and the algorithm to fit the

models are introduced in chapter 4 and chapter 5 respectively. Then we present our ex-

periments in chapter 6. The conclusion and the related work are in chapter 7.

3
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Chapter 2

The Winning Price of the RTB Display

Advertising

In this chapter, we describe the mechanism of modern RTB and discuss the definition and

the availability of the winning price in different cases of bidding result first. These rules

show the challenge of modeling winning price. Then we define our problem.

Figure 2.1: A flow chart of auction process and winning price censoring.

In the modern display advertising market, the RTBs provide a trading platform to let

5
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publishers and DSPs trade with wider partners. Therefore, the publishers sell the impres-

sion more efficiently and the DSPs and advertisers raise their reach.

The auction process is shown in Fig. 2.1. Modern RTBs grant the option that the

publishers may set a soft floor price and the hard floor price. Therefore, the auction is not

a pure second price auction.

We discuss the cases and the related winning price here. Without loss of generality,

suppose we are one of the DSP and our bidding price is b to a specific ad impression.

After receiving the bidding price from the DSPs, the RTBs rank these bids according to

the bidding price and check whether the ad impression is sold or not. When the first price

is smaller than the hard floor price, the ad impression is unsold. In this case, the winning

price is the hard floor price because it is the lowest price to win the impression. On the

other hand, if the first price exceeds the hard floor price, then the ad impression is sold to

the DSP which bid with the first price. If we are the only one whose bidding price exceeds

the hard floor price, then the winning price is still the hard floor price. Otherwise, the

winning price is the highest bidding price from the competitors. It shows that the winning

price is only affected by the competitors and the first floor price.

The cases of the information censoring are discussed here. If wewin the ad impression,

then the availability of the winning price is related to the soft floor price and the true

winning price, named c in this paragraph. If c is higher than the soft floor price, then the

RTB charges us c so the winning price is available. If c is smaller, then the RTB charges

us b and the winning price is left censored, which represents that we only know the upper

bound of the winning price. If we lose the ad impression, the winning price is generally

right censored. Some RTBs grant options of making bidding price public to DSPs. If we

make our bidding price public and the winner also makes the bidding price public, then

the winning price becomes available.

In general, the cases of information censoring in practice are more complicated than

pure second price auction. However, the main difference is due to the soft floor price and

the option of publicity of bidding price. In our data, the ratio of the case different from

second price auction is small.

6
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In this dissertation, we mainly study how to predict the winning price based on the

historical bid information the DSP observed. More specifically, we assume that winning

price of the losing dataset are all right censored and of the winning dataset are all observed.

7
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Chapter 3

Related Work

We review the previous work of studying winning price in the real-time bidding, mainly

at the DSP side, in this chapter. Many of them are mainly studying bidding strategy.

Ghosh et al. proposed adaptive bidding algorithms under a fixed budget with user-

specified constraints in [7]. They assumed that the winning price was drawn i.i.d. from a

specific pdf which is over simplified.

Cui et al. studied the prediction of the winning price and modeled it with the mixture-

of-log-normal distribution on various targeting attributes in [6]. They used the gradient

boosted decision tree and log-normal distribution to model the winning price. However,

they are on the seller side, so there is no discussion of censored data. In this dissertation,

we evaluate the log-normal distribution with our proposed algorithm in the experiments.

Zhang et al. studied the bidding strategy and the cost, which is usually the same as the

winning price, is the input in [24]. For simplification, they assumed that the cost is the

bidding price.

Wang et al. used the non-parametric distribution to model the winning price in [18].

They used the decision tree to cluster the feature vectors and obtained the non-parametric

distribution of the winning price of each clusters. The survival functions were introduced

to handle the censoring issue. The main issue of their method is the scalability due to the

clustering. On the other hand, the regression based methods are well studied and widely

used in the industry for predicting the click-through rate or the conversion rate.

Zhu et al. used the censored linear regression, exponential link function and the gamma

9
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distribution to model the winning price in [26]. They give an empirical analysis to show

that the winning price of the iPinYou dataset is more likely to be gamma distributed. Fi-

nally, they divide the estimation problem into two sub-problems.

We started to study the censoring of the winning price in the side of the ad impression

buyer in [21]. We combined the censored regression model, linear regression model and

winning rate mixture model to predict the winning price. Then in [20], we study how to

improve the model with and without censored data by the selection of the link structure

and the distribution. We show that the link structure linear and the normal distribution is

not the best model in our experiments. In this dissertation, we combine the results of [21]

and [20]. More specifically, we fit the mixture model according to deep learning models.

Furthermore, we revised the mixture model and make them more feasible in practice.

10
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Chapter 4

The Models of the Winning Price

In this chapter, we introduces our proposed models of the winning price.

4.1 Winning Price Model

Without loss of generality, we label the bids with 1, 2, ..., N . The labels are split into two

groups: the labels of winning data W and the labels of losing data L. We denote the

winning price of the i-th bid is wi.

Ideally, the winning price is the highest bidding price from other competitors. There-

fore, the mathematical definition of the winning price is

wi = max
{
b2i , b

3
i , ..., b

M
i

}
. (4.1)

The bki denotes the bidding price of the i-th bid from the k-th competitor. Note that the

floor price discussed in Chapter 2 can be viewed as a competitor who always bids the same

price as the floor price.

However, we cannot directly observe the bidding price from the competitors in prac-

tice. Therefore, we use a statistical model to approximate the winning price. We denote

the vectorized feature of the bid as xi which will be introduced in the next paragraph. We

assume that the conditional distribution of the winning price wi given xi is normal dis-

tributed and the mean is g(xi). For simplicity, we assume that the function f is linear.

11
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Therefore, the approximated winning price model is:

wi ∼ N
(
βTxi, σ

2
)
. (4.2)

This is the linear regression model. The notationN represents the normal distribution and

the two slots which follow the notation N is the mean and variance σ2 respectively. The

βTxi is the inner product between the regression coefficient β and the feature vector xi.

There are two sources of the features. One is from the ad exchange system. In prac-

tice, the ad exchange system broadcasts the information related to the publishers such as

the domain name, the format of the required ad, and the visibility. The other one is from

the DSP. The ad exchange system passes the identity of the audience to the DSPs so that

the DSPs can use the browsing history or other characteristic of the audience which are

collected by the DSP itself or other collaborated data management platforms. For conve-

nience, we assume that the xi is the numerical vector extracted from these features. The

main difference between the winning price model and the CTR model is that the xi used

by the winning price model does not include the features of the ad contents such as the

campaign id and the creative id. The reason is that the competitors do not know the ad we

are going to display to the audience. More description of the xi in RTB will be given in

Sec. 6.1.

According to the model of Eq. 4.2, the loss function of the i-th bid is defined as fol-

low. If i ∈ W, then the loss is the negative log likelihood of the normal distribution

N (βTxi, σ
2) which is the squared loss:

Lw(β, σ
2|wi, xi) =

(wi − βTxi)
2

2σ2
+

log (2πσ2)

2
. (4.3)

If i ∈ L, then the wi is unobserved. However, we use the fact the the winning price is

larger than our bidding price to derive the loss. Suppose the bi is our bidding price, we

use the negative log of the probability of wi > bi as the loss function:

Ll(β, σ
2|bi, xi) = − log

(
1− Φ

(
bi − βTxi

σ2

))
, (4.4)

12
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where Φ is the cumulative density function (cdf) of the standard normal distribution.

We further name the models based on the data they learn from. The winning model,

which corresponds to the parameters βw and σ2
w, is learned from the winning data only.

We denote its prediction as ŵw
i . If the wi ∼ N

(
βT
wxi, σ

2
w

)
, then βT

wxi will minimize

the expected mean squared error and the mean absolute error. Therefore, we will use

ŵw
i = βT

wxi as the point estimation. The full model, which corresponds to the parameters

βf and σ2
f , is learned from the full data including the winning data and the losing data.

Similarly, We denote its prediction as ŵf
i = βT

f xi. The full model is also called as the

censored regressionmodel. Note that we cannot learn the model from the losing data only

because the solution of the loss Eq. 4.4 will tend to∞.

4.2 Generalized Winning Price Model

The model in Eq. 4.2 is extendable.

First, the function g that links the features xi and the expected value of the wi can be

non-linear. More specifically, We let g be a network structure of the deep learning model.

In [20], we called it as the link structure. We still denote it as g and use β to represent

the set of parameters of the network structure. For example, the linear regression model

introduced in Sec. 4.1 is a special case that the g(xi|β) is βTxi, which is a single layer

network. We will introduce the link structures we used in Sec. 4.2.1.

Second, the loss functions of winning data and losing data are generalized based on

the maximal likelihood principle [1]. Suppose fΘ(·|g(xi|β)) and FΘ(·|g(xi|β)) are the

probability density function (pdf) and the cumulative density function (cdf) of the winning

price wi given xi respectively. The loss function for the winning data becomes:

Lw(β,Θ|wi, xi) = − log (fΘ(wi|g(xi|β))) , (4.5)

and for the losing data becomes:

Ll(β,Θ|bi, xi) = − log (1−FΘ(bi|g(xi|β))) , (4.6)

13
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where g(xi|β) is related to the location parameter and Θ is the set of other parameters of

the family of the conditional distribution. For example, if the conditional distribution of

the winning price wi given xi is normal distribution, then the loss functions of winning

data is Eq. 4.3 and of losing data is Eq. 4.4, and the g(xi|β) is the mean and Θ is {σ2}.

In Fig. 4.1, we show the components of the proposed generalized winning price model.

We will introduce the studied link structures and distributions in the following paragraph.

4.2.1 Link Structures

The studied link structures in our experiments are linear,wide, deep, cross,wide_and_deep

and cross_and_deep. Thewide, deep andwide_and_deepmodels are studied by Cheng

et al. [5] and the cross, deep and cross_and_deep models are studied byWang et al. [17]

for the CTR prediction.

The linear structure is glinear(xi) = xT
i β.

The wide structure is the same as the linear structure in essence. The difference is that

we do cross product transformations before vectorizing the raw features into vector xi.

Given the raw features, we iterate all two combinations of the feature to generate the new

2-level interaction of these features. The value of the generated features is the product of

the source features. For example, given a:1,b:2,c:3,d:4, then the generated features are

ab:2,ac:3,ad:4,bc:6,bd:8,cd:12. After generation, we vectorize the generated feature to

obtain xi and use the same link structure gwide(xi) = xT
i β. The term wide is from [5].

The wide structure is widely used in the field of statistics. The difference between the

wide structure and the linear structure in practice is whether the feature affects the g(xi)

in a fixed way. For example, if the first entry of xi increases 1, the variation of glinear(xi)

is fixed and irrelevant to the other entries. However, the variation of gwide(xi) depends on

other entries. Following the example of wide, if the a increases 1, then many generated

features are changed and the changing is affected by other entries. The ab will increase

the value of b, and the ac will increase the value of c. Therefore, the variation of gwide(xi)

after changing one entry depends on other entries.

The deep structure is an embedding layer and several layers of dense neuron network.
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Given the xi ∈ Rp, the parameter of the embedding layer is a matrixW ∈ Rk×p. k is the

length of the embedding vector and p is the dimension of the feature vector. If the j-th

entry of xi, denoted as xi,j is non-zero, then the j-th column of the matrixW , denoted as

Wj , is extracted and multiplied by xi,j . Then all extracted vectors are concatenated as a

long vector, then the long vector is fed into several layers of the dense neuron network.

The wide_and_deep structure concatenates the wide structure and the last layer of

the deep structure. More specifically, let the layer Lwide is the input layer of the wide

structure, which is the last layer before the output, which is a scalar. The layer Ldeep is the

last layer before the output. Then the last layer of wide_and_deep before the output is

the concatenation of Lwide and Ldeep.

The cross structure, proposed by Wang et al. [17], generalized the wide structure. For

each layer of the cross network, the formula between the input and output is

ul+1 = u0u
T
l wl + cl + ul. (4.7)

The first input u0 is the given feature vector xi, and the last one uK is the output of theK

depth cross network.

The cross_and_deep structure concatenates the last layer of the cross structure and

the last layer of the deep structure similarly as the wide_and_deep structure.

4.2.2 Distributions

Is there a better assumption of the underlying distribution or a better formula of the loss

in Fig. 4.1 of the winning price? In this dissertation, we study the normal, log-normal and

Gumbel distribution.

The normal distribution is widely used and we use it as an example in the beginning

of this section.

Cui et al. [6] studied the winning price and used the log-normal distribution to fit

the winning price. Therefore, we study the performance of the log-normal distribution.

We replace the wi and bi by logwi and log bi, respectively in the formula of the normal
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distribution and we denote it by lognormal.

Because the winning price is defined as the maximal bidding price from the competi-

tors in Eq. 4.1, we study one of the limiting distribution of the extreme value theory, the

Gumbel distribution which is first studied by Gumbel [9]. The reader might not be familiar

with the Gumbel distribution, so we give more description of it here.

According to the extreme value theory, suppose X1, X2, ..., Xn are independent and

identical distributed random variables. ThenMn = max (X1, X2, ..., Xn) is also a random

variable. Similar to the central limit theorem, it exists a distribution of Mn as n → ∞.

It is called the extreme value distribution. If we assume that the pdf of the distribution

of X decreases exponentially when the value tends to infinity, which is called that the

distribution of X has exponential tail, then the limiting distribution will be the Gumbel

distribution, which is also known as the type I extreme value distribution.

Because the formula of the extreme value theory is closed to the definition of the

winning price in Eq. 4.1 after adding following assumptions, we study the performance

of the Gumbel distribution in this work. If the bidding price from the competitors are

identical and independent distributed, and the number of the competitors are large, then

the distribution of the winning price will converge. The Gumbel distribution is one of the

three possible limiting distribution, and many widely used distributions such as the normal

distribution has exponential tail, so we study the Gumbel distribution in our experiments.

We denote it as gumbel. This is also an example of using the generalized winning price

model with non-normal distribution.

To derive the loss function of the Gumbel distribution, we need to insert the formula

of the cdf and the pdf of the Gumbel distribution into the Eq. 4.5 and Eq. 4.6. The cdf of

the Gumbel distribution is:

FGumbel(x|µ, σ) = e−e−
x−µ
σ . (4.8)

The pdf of the Gumbel distribution is

fGumbel(x|µ, σ) =
1

σ
e−(z+e−z), (4.9)
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where z = x−µ
σ
.

As shown in Fig. 4.2, the parameter µ controls the center of the distribution, so it is

the location parameter. The parameter σ controls the shape of the distribution, so it is the

shape parameter.

Suppose X ∼ FGumbel(x|µ, σ), then the expected value of X , denoted by E(X), is

E(X) = µ+ γσ, (4.10)

and the variance of X , denoted by V ar(X), is

V ar(x) =
π2

6
σ2, (4.11)

where γ is the Euler-Mascheroni constant. Empirically, γ ≈ 0.5772. Both Eq. 4.10 and

Eq. 4.11 will be used to derive the initialization formula Eq. 5.1 in Chapter 5.

According to our generalized winning price model, the output of the link structure g

should be the expectation of the Gumbel distribution. Note that we let g(xi|β) = µ in our

implementation because the γσ will be a constant when we fitting the parameter β. So the

gumbel model in our experiments is:

wi ∼ FGumbel(x|µ = g(xi), σ). (4.12)

4.3 Mixture Model

In the Sec. 6.2, we will show that the expected values of the winning price on the winning

data and the losing data are different. Therefore, we should use different model for the

winning data and the losing data. For the winning data, we should use the winning model.

For the losing data, because we cannot directly learn from the losing data only, we use the

full model instead. Therefore, the proposed mixture model in [21] predicts the winning

price by the weighted sum of the predictions from the winning model and the full model.

We denote its prediction as ŵm
i = ŵw

i ∗ pi + ŵf
i ∗ (1 − pi), where ŵw

i is the prediction

17
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from the winning model and ŵf
i is the prediction from the full model. In [21], we plug

in pi by the estimated winning rate from a logistic regression model. The prediction of

the mixture model will be close to the prediction of the winning model if the xi is close

to winning data. On the other hand, if the feature xi is similar to the losing data, then the

mixture model will use the full model to predict the winning price.

We further revised the mixture model. First, plugging in pi by the estimated winning

rate is based on the assumption that ŵw
i outperforms ŵf

i on the winning data and ŵ
f
i out-

performs ŵw
i on the losing data. This is not always true.

Furthermore, the idea of usingwinning ratemight imply that thewinning price depends

on the bidding price. It is well known that higher bidding price has higher winning rate.

Therefore, if the mixture model is based on the winning rate, then implicitly it depends on

the bidding price. However, according to Eq. 4.1, the winning price does not depend on

our bidding price.

In this study, we propose the revised mixture model as follow. We create an indicator

ρi ∈ {0, 1} of i-th bid to represent whether the winning model is better than the full model.

On the winning data, we can directly compare the accuracy of the winning model and the

full model, so we let:

ρi =

 0 if ∥ŵw
i − wi∥ >

∥∥∥ŵf
i − wi

∥∥∥ .
1 otherwise.

(4.13)

On the losing data, we only know the lower bound, so the larger one is the better:

ρi =

 0 if ŵf
i > ŵw

i .

1 otherwise.
(4.14)

It might be not trivial to the reader that how we derive the Eq. 4.14. Suppose the

relationship between the two estimators ŵ1
i , ŵ

2
i and the bidding price bi on the losing data

is ŵ1
i < ŵ2

i < bi, then ŵ2
i is better because we know bi < wi. Similarly, if the relationship

is ŵ1
i < bi < ŵ2

i , then ŵ2
i is still better. Finally, if the relationship is bi < ŵ1

i < ŵ2
i , then it

is impossible to decide which one is more accurate. For convenience, we set ŵ2
i is better,
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and derive the Eq. 4.14.

Then, we learn amodel to predict the ρi based on xi. This is a problem of classification,

so we can use similar link structures introduced in Sec. 4.2.1 with classification losses such

as logistic loss to fit the model.
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Figure 4.1: The proposed generalized winning price model. The link structure deep can
be replaced by different structures. Section 4.2.1 lists the studied link structures. The loss
is related to the conditional distribution of the winning pricewi given xi. For winning data
and losing data, we use different loss function based on Eq. 4.5 and Eq. 4.6 respectively.
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Figure 4.2: The PDF of the Gumbel distribution with different µ’s and σ’s.
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Chapter 5

Algorithm

In this chapter, we describe how to train the corresponding deep learning model with dif-

ferent link structure and data distribution.

There are two groups of parameters to learn. The first group is the parameters β of the

link structure g(xi|β). The second group is the parameters Θ of the conditional pdf and

cdf. For example, the regression coefficients β of the linear regression are the first group

and the variance σ2 is the second group.

We use the coordinate descent method to learn the two groups. Many existed deep

learning frameworks let the users define their own loss function, which is the function

of the predictions and the real observations. Therefore, it is straightforward to train the

parameters of the link structure via these frameworks directly when we fix Θ. After each

epoch, we updateΘwhile β is fixed. The iterations is stopped when the loss stops improv-

ing on the validation dataset which is randomly selected from training dataset and will not

be used in the training of both groups. The detailed algorithm is shown in Alg. 5.1.

In our experiments, we use the Adadelta algorithm proposed by Zeiler [23] to fit β and

use the L-BFGS-B algorithm proposed by Byrd et al. [3] to optimizeΘ. The parameters in

β are randomly initialized except the bias term of the output layer, which we will denoted

it as β0 for convenience.

The Θ and β0 are initialized as follow. First, we assume that g(xi|β) = β0. Then,

the moments of the winning price become the function of the Θ and β0. Takes normal

distribution as an example, the first moment is β0, and the second moment is β2
0 + σ2. In
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Input: • The loss function Lw for winning data and Ll for losing data.

• DW = {(xi, wi)|i = 1, 2, ..., n}: The winning data which contains the observed
winning price and the corresponding vectorized features.

• DL = {(xi, wi)|i = 1, 2, ..., n}: The losing data which contains the bidding price
and the corresponding vectorized features.

• Split DW and DL into the training dataset and the validation dataset.
Initialization:

• Setting Θ according to the reduced moment estimators.

• Setting β randomly. The bias term of the output layer should be set by themoment
estimator too.

Model Fitting via Coordinate Descent on Training Dataset:

• Fix Θ, learn β.

• Fix β, optimize Θ.

• Monitor the loss on the validation dataset and stop the iteration if the loss stops
improving.

Figure 5.1: Coordinate descent algorithm of the generalized winning price model

general, we letmk(Θ, β0) be the analytic form of the k-th moment.

On the other hand, we use
∑

i∈DW
wk

i as an empirical estimator of the k-th moment.

Therefore, we obtain a set of equations:



∑
i∈DW

wi = m1(Θ, β0)∑
i∈DW

w2
i = m2(Θ, β0)

· · ·∑
i∈DW

wK
i = mk(Θ, β0)

(5.1)

The numberK depends on the number of parameters of Θ. We initialize Θ and β0 by the

simultaneous solution of Eq. 5.1.

For example, let the conditional distribution of wi given xi is gumbel which is intro-
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duced in Sec. 4.2.2. Then we plugin Eq. 4.10 and Eq. 4.11 into Eq. 5.1 to obtain:


1
N

∑
i∈DW

wi = µ+ γσ

1
N

∑
i∈DW

w2
i =

π2

6
σ2 + (µ+ γσ)2

(5.2)

The initial value of β0 = µ and Θ = {σ} are set as the simultaneous solution of the

Eq. 5.2.
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Chapter 6

Experiments

In this chapter, we will introduce our experiments to study the modeling of the winning

price. The experiments are based on the opened RTB dataset: the iPinYou dataset. Wewill

introduce the dataset and howwe vectorize the features. Then, we compare the distribution

of the winning price on the winning data and losing data. The performance of the linear

regression models based on winning data and losing data are also evaluated. We want to

understand the effects of learning from losing data. The mixture model are also studied,

too.

Then, we will directly study the deep learning models and distributions. Different

combinations of the link structure and distributions are studied. We want to understand

which model predicts the winning price better.

Because the difference between the winning data and losing data remains. Therefore,

we apply the technique of mixture model and the revised mixture model to deep learning

models and distributions.

6.1 Datasets and Features

The iPinYou dataset [25] contains three seasons of RTB records in the perspective of the

DSP.We use the data of season 2 and 3 because the private feature is not provided in season

1. The features we used are shown in Table. 6.1. All numerical features are transformed

to categorical by binning. Then all features are converted to binary features via hashing
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Figure 6.1: The mean squared error of the predictions. βw is the model learned from
winning data. βL is the model learned from losing data. The results are evaluated at the
winning data.
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Figure 6.2: The mean squared error of the predictions. βw is the model learned from
winning data. βL is the model learned from losing data. The results are evaluated at the
losing data.
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Figure 6.3: The mean squared error of the predictions. βw is the model learned from
winning data. βf is the model learned from both winning data and losing data. The results
are evaluated at the losing data.
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Figure 6.4: The mean squared error of the predictions. βw is the model learned from
winning data. βf is the model learned from full data. βm is the mixture model. The
results are evaluated at the full data.
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Table 6.1: An example of features in iPinYou dataset [25].
Example Feature Name
183.18.197.* IP
216 Region
236 City
2 AdExchange
3d68edb4b8f5bba8bea6782e33c8e228 Domain
e63cfda49ec2a36a0cafcd646906227b URL
3844656199 AdSlotId
250 AdSlotWidth
250 AdSlotHeight
OtherView AdSlotVisibility
Na AdSlotFormat
7321 CreativeID
6 weekday
02 hour
2259 adid
10684,10102,10006 usertag

Table 6.2: The statistics and the performance of the winning rate model for the dataset
iPinYou Season 2.

day bids win Avg. WP Avg. WP at W Avg. WP at L WR EWR WR AUC WR logloss
1 2013-06-06 1821479 1514416 74.86 52.47 185.33 0.83 0.83 0.89 0.29
2 2013-06-07 1806062 1524314 72.31 51.12 186.97 0.84 0.85 0.90 0.26
3 2013-06-08 1634967 1352038 81.14 58.49 189.42 0.83 0.83 0.87 0.31
4 2013-06-09 1651630 1366097 81.32 58.96 188.29 0.83 0.83 0.88 0.30
5 2013-06-10 1920576 1603798 79.84 58.91 185.76 0.84 0.83 0.91 0.26
6 2013-06-11 1745905 1461085 79.62 58.92 185.84 0.84 0.86 0.85 0.36
7 2013-06-12 1657578 1378728 80.00 58.80 184.79 0.83 0.85 0.84 0.35

trick proposed byWeinberger et al. [19]. This trick is widely used in the field of the online

advertising such as He et al. [10], Zhang et al. [25] and Chapelle [4]. Then we prune out

those levels whose rate of appearance is less than 0.01%. Similar pruning is applied to the

input of the wide model.

Only the winning price of the winning bids are available in the iPinYou dataset, so we

only use these data in our experiments. All bidding price is divided by two and compared to

the original winning price, so we obtain a simulated bidding result. The winning data and

losing data in this section are all defined by the simulated result instead of the real result.

In our settings, the pattern of the winning price is not changed, and we know the real

winning price on the simulated losing data. Therefore, we can evaluate the performance

of models on simulated losing data.

We show the basic statistics of the iPinYou datasets in the Table. 6.1 and Table. 6.1. For
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Table 6.3: The statistics and the performance of the winning rate model for the dataset
iPinYou Season 3.

day bids win Avg. WP Avg. WP at W Avg. WP at L WR EWR WR AUC WR logloss
1 2013-10-19 228133 170739 86.74 50.89 193.36 0.75 0.75 0.85 0.39
2 2013-10-20 214295 159646 87.90 51.95 192.91 0.74 0.74 0.87 0.36
3 2013-10-21 848760 621626 90.09 51.41 195.95 0.73 0.73 0.89 0.34
4 2013-10-22 681700 503108 91.51 52.89 200.31 0.74 0.74 0.87 0.37
5 2013-10-23 226791 170850 89.27 53.45 198.69 0.75 0.75 0.83 0.40
6 2013-10-24 245897 197279 74.19 45.59 190.24 0.80 0.80 0.83 0.34
7 2013-10-25 318240 245671 82.28 49.20 194.26 0.77 0.77 0.85 0.36
8 2013-10-26 268380 198709 89.61 49.19 204.91 0.74 0.74 0.89 0.35
9 2013-10-27 110467 84730 86.01 48.44 209.71 0.77 0.77 0.90 0.31

each row, the statistics of the specific day is shown. The column Avg. WP is the averaged

winning price. The column Avg. WP at W is the averaged winning price at winning data.

The column Avg. WP at L is the averaged winning price at losing data. The column WR

is the winning rate of the simulated bidding result.

6.2 The Difference Between the Winning Data and Los-

ing Data

Are the pattern of winning price on the winning data and on the losing data different?

To answer the question, a naive way is to read the Table. 6.1 and Table. 6.1. They

show that the averaged winning price at losing data, which is the column Avg. WP at L, is

consistently higher than the averaged winning price at winning data, which is the column

Avg. WP at W. Therefore, the patterns of the winning price are different at the observed

data and at the censored data.

More specifically, we conduct the following experiments to study the pattern of the

winning price conditioning on the features xi. The estimator βw is learned from the win-

ning data of a specific day, which is called training day, via minimizing the Eq. 4.3 and

the estimator βL is learned from the losing data of the training day in the same way. We

evaluate the performance at both the winning and losing data of the next day of the training

day.

Note that the estimator βL is impractical because the winning price at the losing data

is unavailable.
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The results at the winning data are shown in Fig. 6.1. The βw outperforms except two

days and the difference of the MSE is more dramatic for cases which the βw outperforms.

Therefore, the estimator βw generally outperforms.

The results at the losing data are shown in Fig. 6.2. Both datasets show different

patterns of the result. It is hard to tell that which estimator is better in the dataset of

iPinYou season 2. The estimator βL consistently outperforms in the dataset of iPinYou

season 3. In contrast, the estimator βw consistently outperforms in the dataset of iPinYou

season 2.

As a summary, the results in Fig. 6.1 and Fig. 6.2 show that the pattern of the winning

price conditioning on the features are still different at the winning data and losing data.

Otherwise, the result of two estimators should be similar.

6.3 The Performance of the Censored Regression

Learning βL is impossible because we do not observe the winning price on losing data.

Therefore, we use the loss Eq. 4.3 for winning data and Eq. 4.4 for losing data to learn a

model which is denoted as βf . The f means that the model is learned from full data.

The results are shown in Fig. 6.3. The βf outperforms the βw in both datasets iPinYou

season 2 and 3.

The previous results show that learning from losing data is essential to predict the los-

ing data. The Sec. 6.2 shows that the winning data and losing data are different. However,

the model cannot directly learn from the losing data, so we use the censored regression

introduced in Sec. 4.1 to learn from losing data. The Fig. 6.3 shows that the censored does

perform better on the losing data.

6.4 The Performance of the Mixture Model

However, learning from losing data might damage the performance on the winning data

because they are different. Therefore, we proposed the mixture model in Sec. 4.1, which

will be denoted as βm, and compare it with the winning model βw and the full model
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βf based on the evaluation on the full data. All of them are learned from the data of a

specific day, which is called training day, via minimizing the objective function. We use

the logistic regression to learn the winning rate.

Note that the performance of the logistic regression is shown in Table. 6.1 and Ta-

ble. 6.1. The column EWR is the expected winning rate according to our winning rate

model. The columnWR AUC is the Area Under Curve (AUC) of our winning rate model.

The column WR Logloss is the the Logarithm Loss (logloss) of our winning rate model.

The results are shown in Fig. 6.4. First, the βm consistently outperforms the βw, no

matter whether the βf is better than the βw or not, and no matter the AUC and logloss of

the predicted winning rate. The βm is the averaged of the βw and βf , so it is interestingly

that sometimes the performance of the βm is the best.

One aspect is that the βm does pick the more appropriate prediction from βw and βf .

The winning rate provides a good indication of which estimator is better. If the impression

is more likely to be won, then the βw is better as shown in Sec. 6.2. If the impression is

more likely to be lost, then the βf provides the information from other losing data.

6.5 ComparingDifferent Link Structures on theWinning

Data

In the following experiments, we want to focus on the effect of different link structures

and the distributions. Therefore, we randomly split the training dataset and testing dataset

from the full data of the iPinYou Season 2 and Season 3. There is no daily progressive

validation anymore because the daily variation is large according to the experiments in

Sec. 6.2, Sec. 6.3 and Sec.6.4.

When we only learn the model from the winning data, as shown in Table 6.4 and Ta-

ble 6.5, the link structures cross, deep, wide_and_deep, and cross_and_deep all out-

perform the link structure linear and wide. This is an evidence that the deep learning

models that are successful in CTR prediction in the literature, such as Cheng et al. [5] and

Wang et al. [17], also work better on the winning price problem.
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Table 6.4: Prediction results of different link structures with normal distribution and with-
out censored data on the winning data from iPinYou 2nd Season.

structure winning_lll winning_mse winning_mae
1 cross -4.4576 435.8893 13.5904
2 cross_and_deep -4.4328 414.7468 13.2153
3 deep -4.4306 412.8637 13.1343
4 linear -4.5387 512.6252 15.9282
5 wide -4.4720 448.5964 14.2188
6 wide_and_deep -4.4312 413.3338 13.0625

Table 6.5: Prediction results of different link structures with normal distribution and with-
out censored data on the winning data from iPinYou 3rd Season.

structure winning_lll winning_mse winning_mae
1 cross -4.7718 816.9675 21.2496
2 cross_and_deep -4.7540 787.6714 20.5687
3 deep -4.7556 790.3033 20.3882
4 linear -4.8335 924.4068 23.6405
5 wide -4.7815 833.1215 21.7567
6 wide_and_deep -4.7530 786.5131 20.4484

In our opinion, one reason is that the input features are similar, so the underlying

relationship between the response and the features can be well approximated by similar

models. Moreover, the prediction problem on the winning data is a traditional regression

problem and does not involve the censored data.

However, the link structures cross, deep, wide_and_deep and cross_and_deep do

not always outperform linear and wide in Table 6.5 and Table 6.5. For example, linear is

the best link structure on the 2nd season compared by the log-likelihood. Unlike the tradi-

tional regression problem, the censored regression problems are not always improved by

introducing the sophisticated link structure. In our opinion, the prediction on the losing

data based on the censored data is based on the two assumptions and introducing sophisti-

cated link structure might not be helpful. The first is that the winning data and the losing

data are generated by the same model, although we already know that this assumption

is wrong in [21]. Therefore, the sophisticated link structure might fit the winning data

too well and the performance on the losing data is decreased. The second is the correct

distribution of the winning price in the model, which is the reason why we extend our

generalized winning price model to more distributions.
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Table 6.6: Prediction results of different link structures with normal distribution and on
the losing data from iPinYou 2nd Season.

structure losing_lll_no losing_lll_yes losing_mse_no losing_mse_yes losing_mae_no losing_mae_yes
1 cross -20.8739 -9.0624 14738.6942 9420.6178 108.5623 79.8223
2 cross_and_deep -21.0636 -9.1919 14001.3381 9196.6989 104.8069 78.8044
3 deep -21.0732 -8.9986 13923.0122 8881.3482 104.5022 76.4858
4 linear -19.6334 -8.6330 16034.5496 13478.5403 115.9354 106.2937
5 wide -20.6144 -8.9124 14943.2811 11970.2267 109.8618 97.5983
6 wide_and_deep -21.2974 -9.0653 14102.2706 8819.0171 105.2625 76.7369

Table 6.7: Prediction results of different link structures with normal distribution and on
the losing data from iPinYou 3rd Season.

structure losing_lll_no losing_lll_yes losing_mse_no losing_mse_yes losing_mae_no losing_mae_yes
1 cross -15.7112 -8.6219 18447.7811 16356.7480 127.8237 105.5414
2 cross_and_deep -16.1634 -7.6145 17936.7242 11244.4442 125.6698 91.9554
3 deep -16.1079 -6.9873 18017.7939 16103.3782 125.8273 119.6627
4 linear -15.3388 -7.0096 20296.4183 14262.8885 135.8718 110.9407
5 wide -15.9169 -7.0570 19219.6432 12732.2718 131.5473 101.7985
6 wide_and_deep -15.9669 -7.5330 17861.6889 11072.0938 125.1455 90.6631

6.6 Comparing Different Distributions

We compare the performance of different distributions under the link structure deep on

the winning data in Table 6.8 and Table 6.9. As one can see, there is no significant winner

of the three distributions. The gumbel distribution outperforms other distributions once,

the normal distribution twice, and the lognormal distribution three times. Compared to

the result in 6.5, we conclude that the effect of link structure is more significant compared

to the effect of the distribution on the winning data.

6.7 Overall Comparison of Link Structures andDistribu-

tions

We compare the performance of different distributions and link structures on the winning

data and losing data in Table 6.10, Table 6.11, Table 6.12, and Table 6.13. There is no

specific combination of the distribution and the link structure that wins all comparisons.

On thewinning data, deep outperforms all other link structures five times andwide_and_deep

once. The distribution lognormal outperforms all other three times, normal twice, and

gumbel once. The results still show that the sophisticated link structure do improve the

performance on the winning data.
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Table 6.8: Prediction results of different distributions with link structure deep and without
censored data on the winning data from iPinYou 2nd Season.

loss winning_lll winning_mse winning_mae
1 gumbel -4.3216 468.8233 14.6015
2 lognormal -4.5377 458.0666 12.9183
3 normal -4.4306 412.8637 13.1343

Table 6.9: Prediction results of different distributions with link structure deep and without
censored data on the winning data from iPinYou 3rd Season.

loss winning_lll winning_mse winning_mae
1 gumbel -4.6535 843.8549 21.5606
2 lognormal -4.6484 848.8295 19.9958
3 normal -4.7556 790.3033 20.3882

However, on the losing data, the link structures linear and wide outperform other so-

phisticated link structures based on the log-likelihood measurement. The sophisticated

link structures outperform linear and wide link structure based on the mean squared er-

ror and mean absolute error. And The distribution normal outperforms all other three

times, lognormal twice, and gumbel once. In our opinions, there is no significant winner

of the link structure and the distribution. It shows that learning from censored data and

predicting the losing data is still a great challenge even if we introduce the link structure

from deep learning and the non-normal distributions. Note that the distribution lognormal

sometimes gives a high value to predict the log of the winning price and the mean squared

error and the mean absolute error become large. Therefore, we report NA if the value

exceeds 105 in the tables.

The proposed algorithm makes more flexibility to model the winning price but it also

requires carefully tuning for specific dataset and measurement.

6.8 TheMixtureModel ofGeneralizedWinningPriceModel

In this section, we compare the mixture mode and the revised mixture model based on the

link structure deep with normal distribution.

The result is shown in Table. 6.14. Both mixture models outperform winning model

as shown in Sec. 6.4. The revised mixture model performs better than mixture model on
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Table 6.10: Prediction results of different distributions and link structures without cen-
sored data on the winning data from iPinYou 2nd Season.

structure loss winning_lll winning_mse winning_mae
1 cross gumbel -4.3432 491.6216 15.0109
2 cross lognormal -4.5629 479.0097 13.7080
3 cross normal -4.4576 435.8893 13.5904
4 cross_and_deep gumbel -4.3274 463.9229 14.4616
5 cross_and_deep lognormal -4.5388 469.3962 12.9662
6 cross_and_deep normal -4.4328 414.7468 13.2153
7 deep gumbel -4.3216 468.8233 14.6015
8 deep lognormal -4.5377 458.0666 12.9183
9 deep normal -4.4306 412.8637 13.1343
10 linear gumbel -4.4346 545.8220 16.5974
11 linear lognormal -4.6372 550.2760 15.9430
12 linear normal -4.5387 512.6252 15.9282
13 wide gumbel -4.3648 492.2358 15.3457
14 wide lognormal -4.5751 490.3757 14.1944
15 wide normal -4.4720 448.5964 14.2188
16 wide_and_deep gumbel -4.3218 464.3983 14.3919
17 wide_and_deep lognormal -4.5426 474.6091 13.1613
18 wide_and_deep normal -4.4312 413.3338 13.0625

losing data and all data.

In our opinion, the proposed revised mixture model is at least comparable to the orig-

inal mixture model. Furthermore, it does not have the issue of implicit dependency of the

bidding price. Therefore, the revised mixture model should be more feasible in practice.
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Table 6.11: Prediction results of different distributions and link structures without cen-
sored data on the winning data from iPinYou 3rd Season.

structure loss winning_lll winning_mse winning_mae
1 cross gumbel -4.6658 867.2767 21.8831
2 cross lognormal -4.6687 893.9746 20.8158
3 cross normal -4.7718 816.9675 21.2496
4 cross_and_deep gumbel -4.6529 846.9736 21.5401
5 cross_and_deep lognormal -4.6500 892.0552 20.0674
6 cross_and_deep normal -4.7540 787.6714 20.5687
7 deep gumbel -4.6535 843.8549 21.5606
8 deep lognormal -4.6484 848.8295 19.9958
9 deep normal -4.7556 790.3033 20.3882
10 linear gumbel -4.7240 960.0766 23.9640
11 linear lognormal -4.7203 950.9485 22.6279
12 linear normal -4.8335 924.4068 23.6405
13 wide gumbel -4.6762 880.1435 22.5572
14 wide lognormal -4.6678 919.9535 21.0478
15 wide normal -4.7815 833.1215 21.7567
16 wide_and_deep gumbel -4.6566 842.2466 21.7194
17 wide_and_deep lognormal -4.6541 918.0869 20.4997
18 wide_and_deep normal -4.7530 786.5131 20.4484

Table 6.12: Prediction results of different distributions and link structures with censored
data on the losing data from iPinYou 2nd Season. We report NA if the value exceeds 105.

structure loss losing_likelihood losing_mse losing_mae
1 cross gumbel -7.3952 10288.4104 88.3192
2 cross lognormal -7.6055 NA 897.3822
3 cross normal -9.0624 9420.6178 79.8223
4 cross_and_deep gumbel -7.4159 10304.0098 87.4528
5 cross_and_deep lognormal -7.7986 NA NA
6 cross_and_deep normal -9.1919 9196.6989 78.8044
7 deep gumbel -7.3738 10276.9203 87.4072
8 deep lognormal -7.1944 NA 264.3231
9 deep normal -8.9986 8881.3482 76.4858
10 linear gumbel -7.6529 15514.4172 122.5010
11 linear lognormal -6.6842 39241.4479 116.1995
12 linear normal -8.6330 13478.5403 106.2937
13 wide gumbel -7.5362 11206.8191 93.2920
14 wide lognormal -6.8614 NA 159.8261
15 wide normal -8.9124 11970.2267 97.5983
16 wide_and_deep gumbel -7.8029 10274.7159 87.0145
17 wide_and_deep lognormal -7.3441 NA 283.0034
18 wide_and_deep normal -9.0653 8819.0171 76.7369
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Table 6.13: Prediction results of different distributions and link structures with censored
data on the losing data from iPinYou 3rd Season. We report NA if the value exceeds 105.

structure loss losing_likelihood losing_mse losing_mae
1 cross gumbel -11.2795 13641.9595 107.5384
2 cross lognormal -76.2128 NA NA
3 cross normal -8.6219 16356.7480 105.5414
4 cross_and_deep gumbel -8.3036 12384.1147 101.4792
5 cross_and_deep lognormal -8.1363 NA 1307.0256
6 cross_and_deep normal -7.6145 11244.4442 91.9554
7 deep gumbel -7.0293 17544.6791 136.3222
8 deep lognormal -6.8771 6547.0021 139.0764
9 deep normal -6.9873 16103.3782 119.6627
10 linear gumbel -6.8253 12752.7522 105.1365
11 linear lognormal -6.8407 NA 246.2628
12 linear normal -7.0096 14262.8885 110.9407
13 wide gumbel -6.7611 11825.1855 99.1948
14 wide lognormal -7.2980 NA 566.7420
15 wide normal -7.0570 12732.2718 101.7985
16 wide_and_deep gumbel -6.7755 11087.2502 94.7485
17 wide_and_deep lognormal -8.0712 NA 1318.3044
18 wide_and_deep normal -7.5330 11072.0938 90.6631

Table 6.14: The results of mixture model and revised mixture model.
measurements winning model full model mixture model revised mixture model

all_mae 46.65 45.42 45.00 44.75
all_mse 5033.13 4588.72 4976.21 4832.13

winning_mae 20.55 26.23 21.91 22.61
winning_mse 788.73 1217.55 897.85 943.70
losing_mae 124.21 102.46 113.64 110.54
losing_mse 17647.47 14607.81 17097.09 16388.55
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Chapter 7

Conclusion and Future Work

In this dissertation, we study the problem of predicting the winning price in the real time

bidding. We describe the real mechanism of the second price auction in the real time

bidding, define the winning price and give a mathematical model of the winning price.

Then we propose a statistical approach to model the winning price on the buyer side.

Then the linear regression model based on the winning dataset is studied. The importance

of learning from the losing dataset are emphasized and the censored regression model

are applied. Then we generalize these winning price models with different link structure

from the field of deep learning and different distributions. We proposed an algorithm to

fit the model from censored data and the algorithm can be easily implemented with the

deep learning frameworks. We showed that the performance is improved after applying

sophisticated link structure from the deep learning models on the winning data and the

performance is improved on the losing data after learning from censored data. Then, the

mixture model is proposed and revised. The robustness of the linear winning price models

and the generalized models are enhanced after applying the mixture model.

However, the mixture model is not the satisfactory solution of this problem. BothMSE

and MAE of losing dataset are still huge compared to the MSE and MAE of the winning

dataset. In our opinion, the lack of direct observation of the winning price on the losing

dataset makes this problem very difficult. A better learning strategy should study the data

collection instead of focus on learning the historical data only. Therefore, applying the

reinforcement learning to collect the information efficiently from the market is our future
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work.
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