Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73172
Title: 具三井位能之反應擴散梯度系統的三相行波解及穩定解之變分研究
Variational Approaches to Three-Phase Standing and Traveling Waves of Reaction-Diffusion-Gradient Systems with a Triple-Well Potential
Authors: Hung-Yu Chien
簡鴻宇
Advisor: 陳俊全
Keyword: 反應擴散方程,行波解,三相行波解,伽馬收斂,
reaction diffusion system,3-phase traveling wave solution,Gamma convergence,
Publication Year : 2019
Degree: 博士
Abstract: 針對 Allen-Cahn 類型的反應擴散系統,在高維度空間中我們好奇其解的非平 面結構以及多相性。我們目標是在無界區域如全平面或者⻑條狀定義域上找到此 類系統的駐波 (standing wave) 以及行波 (traveling wave) 解。
我們有兩種嘗試,第一種是利用 Γ-收斂理論,將方程式的解寫成一系列變分 問題的解,並討論其收斂性。我們假設了系統的勢 (potential) 滿足一種簡單的對 稱不變性 — 這個條件比過去部分文獻上假設的在特定對稱群下的不變性還要弱, 以及考慮勢能的低點同時也是系統的常數穩定態 (constant equilibrium),其中相 對稱的兩點之間有唯一的相變穩定解 (stationary phase transition, 連接此兩個相 的一維方程式穩定解)。最後可以得到一個全平面上的穩定解,而前述的唯一條件 保證了最後得到的解不是常數的退化解。
另外考慮同樣的假設,並多假設了此方程之勢能中的單一相點附近是嚴格上 凹,則可以證明存在一「三相行波解」,連結此「單一相點」與前述「兩點間相變 函數的近似解」。最後根據這個解,我們考慮將⻑條狀定義域拉寬成全平面,相對 應到的解也會存在子序列收斂至一全平面解,由對行波速度的估計可以得知速度 會隨著寬度遞減至零,可知最後收斂得到的全平面解亦是一穩定解。
In this paper we aim to find standing and traveling wave solutions, i.e. w(z, y) = u(x, y, t) with z = x − ct, to the reaction-diffusion gradient system with a triple- well potential ∂tu = ∆u − ∇W(u) on an entire domain R2 or a cylindrical domain R×(−l,l).
Firstly by the theory of Γ-convergence, standing wave solutions (i.e. stationary solutions) are obtained under a condition that the potential W is invariant under a simple reflection. This symmetry assumption is weaker than the invariance under a general symmetric group, which is assumed by some literatures.
And also, under the same condition on symmetry, via a variational method, we can show the existence of a traveling wave solution that connects the three constant equilibria in an approximate sense on a cylindrical domain. We propose a convexity condition on one of the equilibria of W to ensure the asymptotical convergence to this equilibrium of the traveling wave solutions at z = −∞.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73172
DOI: 10.6342/NTU201901241
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
2.51 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved