Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71733
Title: 利用卷積神經網路串連新創產業故事鏈
Mining Storylines within Entrepreneurial Industry Based on Convolutional Neural Networks
Authors: Yu-Hsien Lee
李昱賢
Advisor: 李瑞庭
Keyword: 故事鏈,新創產業,故事鏈摘要,卷積類神經網路,
Storyline,Entrepreneurial industry,Storyline summarization,Convolutional Neural Network,
Publication Year : 2018
Degree: 碩士
Abstract: 發布在網路上的文章數量成長速度非常地快,造成使用者擷取資訊的困難,若能將大量的文章串聯成一個個的故事鏈,則可以幫助使用者快速的閱覽大量文章中的重要資訊。因此,我們提出一個方法串聯新創產業相關的故事鏈。我們的架構包含五個階段,第一階段,我們去除掉對於串連故事鏈影響力小的字詞;第二階段,我們建立一個News-CNN模型從文章中擷取語意的特徵;第三階段,我們將每篇文章的專有名詞提取出來作為專有名詞特徵;第四階段,我們利用兩個擷取出的特徵,計算文章與文章間的相似度,然後將相關的文章串連起來,構成文章層級的故事鏈,接著,我們設定一些故事鏈的規則,以去除不適合的故事鏈;最後,我們將故事鏈提取摘要,建構句子層級的故事鏈。實驗結果顯示,我們提出的方法比SteinerTree更能串連出好的故事鏈,且我們所串連出的故事鏈能夠提供使用者豐富的產業資訊,讓使用者快速掌握相關產業的資訊,協助其擬定相關商業策略。
Nowadays, the amount of articles on the Internet has grown very rapidly. Mining storylines from such a large amount of articles may give us a picture what is going on or the whole picture of related events. Therefore, we propose a framework to build storylines from news articles of entrepreneurial industry. The proposed framework contains five steps. First, we preprocess the articles to remove stop words and low-frequency words. Second, based on Convolutional Neural Network (CNN), we build a model, called News-CNN, to extract semantic features from news articles and transform each news article into a feature vector. Third, we convert the name entities in each news article into a feature vector. Fourth, we use the feature vectors derived by News-CNN and the feature vectors derived from name entities to compute the similarity between news articles and then group similar news articles into a document-based storyline. Also, we set some rules to remove redundant storylines. Finally, based on NMF, we propose a method to summarize each document-based storyline into a sentence-based storyline. The experiment results show our proposed method can generate better storylines than SteinerTree. Also, it can provide valuable business insights for users to implement their business strategies in the related industry.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71733
DOI: 10.6342/NTU201804397
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.68 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved