請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | |
| dc.contributor.author | Yu-Hsien Lee | en |
| dc.contributor.author | 李昱賢 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:08:01Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2019-01-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-12-26 | |
| dc.identifier.citation | [1]A. Amr, Q. Ho, J. Eisenstein, E. P. Xing, A. J. SmolaS, C. H. Teo, Unified analysis of streaming news, Proceedings of the ACM 20th International Conference on World Wide Web, 2011, pp. 267–276.
[2]L. Bing, P. Li, Y. Liao, W. Lam, W. Guo, R. J. Passonneau, Abstractive multi-Document summarization via phrase selection and merging, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, pp. 1587–1597. [3]J. R. Finkel, T. Grenager, C. Manning, Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling. Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, 2005, pp. 363-370. [4]G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, B. Kingsbury, Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Processing Magazine 29 (6) (2012), pp. 82–97. [5]T. Hirao, Y. Yoshida, M. Nishino, N. Yasuda, M. Nagata, Single-document summarization as a tree Knapsack problem, Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2015, pp. 1515–1520. [6]A. James, V. Lavrenko, D. Malin, R. Swan, Detections, bounds, and timelines: Umass and TDT-3, Proceedings of Topic Detection and Tracking Workshop, 2000, pp. 167–174. [7]R. Johnson, T. Zhang, Effective use of word order for text categorization with convolutional neural networks, Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2014, pp. 103–112. [8]Y. Kim, Convolutional neural networks for sentence classification, Proceedings of Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1746–1751. [9]T. K. Landauer, P. W. Foltz, D. Laham, An introduction to latent semantic analysis, Discourse Processes 25(2-3) (1998), pp. 259–284. [10]D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, Proceedings of the 13th International Conference on Neural Information Processing Systems, 2001, pp. 535–541. [11]J. Lee, S. Park, C. Ahn, D. Kim, Automatic generic document summarization based on non-negative matrix factorization, Information Processing and Management 45 (1) (2009), pp. 20–34. [12]C. Lin, Rouge: A package for automatic evaluation of summaries, Proceedings of the Association for Computational Linguistics Workshop: Text Summarization Branches Out, 2004, pp. 74–81. [13]C. Lin, C. Lin, J. Li, D. Wang, Y. Chen, T. Li, Generating event storylines from microblogs, Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 175–184. [14]F. R. Lin, C. H. Liang, Storyline-based summarization for news topic retrospection, Decision Support Systems 45 (3) (2008), pp. 473–490. [15]T. Mikolov, M. Karafiát, L. Burge, J. Černocký, S. Khudanpur, Recurrent neural network based language model. Eleventh Annual Conference of the International Speech Communication Association. 2010, pp. 1045-1048 [16]T. Mikolov, I. Sutskever, K. Chen, G. S. Corrando and J. Dean. Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, Vol. 2, 2013, pp. 3111–3119. [17]D. Mimno, H. M. Wallach, E. Talley, M. Leenders, A. McCallum, Optimizing semantic coherence in topic models, Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2011, pp. 262–272. [18]S. Park, User-focused automatic document summarization using non-negative matrix factorization and pseudo relevance feedback, Proceeding of International Conference on Computer Engineering and Applications, 2009, pp. 101–105. [19]S. Park, B. Cha, J. Kim, Document summarization using NMF and pseudo relevance feedback based on k-means clustering, Computing and Informatics 35 (3) (2016), pp. 744–760. [20]S. Petrović, M. Osborne, V. Lavrenko, Using paraphrases for improving first story detection in news and Twitter, Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2012, pp. 338–346. [21]B. Phil, E. Grefenstette, N. Kalchbrenner, A convolutional neural network for modelling sentences, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014, pp. 655–665. [22]H. Saggion, K. Bontcheva, H. Cunningham, Robust generic and query-based summarization, Proceedings of the 10th Conference on European Chapter of the Association for Computational Linguistics-Volume 2, 2003, pp. 235–238. [23]D. Scherer, A. Muller, S. Behnke, Evaluation of pooling operations in convolutional architectures for object recognition, Proceedings of International Conference on Artificial Neural Networks, 2010, pp. 92–101. [24]A. Severyn, A. Moschitti, Learning to rank short text pairs with convolutional deep neural networks, Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2015, pp. 373–382. [25]D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, S.Dieleman, Mastering the game of Go with deep neural networks and tree search, Nature 529 (7587) (2016), pp. 484–489. [26]J. Steinberger, J. Karel, Using latent semantic analysis in text summarization and summary evaluation, Proceedings of the 7th International Conference on Information System Implementation and Modeling, 2004, pp. 93–100. [27]L. Steve, C. L. Giles, A. C. Tsoi, A. D. Back, Face recognition: A convolutional neural-network approach, IEEE Transactions on Neural Networks 8 (1) (1997), pp. 98–113. [28]Y. Wei, L. Singh, B. Gallagher, D. Buttler, Overlapping target event and story line detection of online newspaper articles, Proceedings of IEEE International Conference on Data Science and Advanced Analytics, 2016, pp. 222–232. [29]S. Yelong, X. He, J. Gao, L. Deng, G. Mesnil, A latent semantic model with convolutional-pooling structure for information retrieval, Proceedings of the 23rd CAN International Conference on Conference on Information and Knowledge Management, 2014, pp. 101–110. [30]W. Yin, K. Kann; M. Yu, H. Schütze, Comparative Study of CNN and RNN for Natural Language Processing, arXiv:1702.01923, 2017 [31]J. Yu, L. Xie, X. Xiao, E. S. Chng, Learning distributed sentence representations for story segmentation, Signal Processing 142 (2018), pp. 403–411. [32]W. Zhou, C. Shen, T. Li, S. C. Chen, N. Xie, Generating textual storyline to improve situation awareness in disaster management. Proceedings of IEEE 15th International Conference on Information Reuse and Integration, 2014, pp. 585–592. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71733 | - |
| dc.description.abstract | 發布在網路上的文章數量成長速度非常地快,造成使用者擷取資訊的困難,若能將大量的文章串聯成一個個的故事鏈,則可以幫助使用者快速的閱覽大量文章中的重要資訊。因此,我們提出一個方法串聯新創產業相關的故事鏈。我們的架構包含五個階段,第一階段,我們去除掉對於串連故事鏈影響力小的字詞;第二階段,我們建立一個News-CNN模型從文章中擷取語意的特徵;第三階段,我們將每篇文章的專有名詞提取出來作為專有名詞特徵;第四階段,我們利用兩個擷取出的特徵,計算文章與文章間的相似度,然後將相關的文章串連起來,構成文章層級的故事鏈,接著,我們設定一些故事鏈的規則,以去除不適合的故事鏈;最後,我們將故事鏈提取摘要,建構句子層級的故事鏈。實驗結果顯示,我們提出的方法比SteinerTree更能串連出好的故事鏈,且我們所串連出的故事鏈能夠提供使用者豐富的產業資訊,讓使用者快速掌握相關產業的資訊,協助其擬定相關商業策略。 | zh_TW |
| dc.description.abstract | Nowadays, the amount of articles on the Internet has grown very rapidly. Mining storylines from such a large amount of articles may give us a picture what is going on or the whole picture of related events. Therefore, we propose a framework to build storylines from news articles of entrepreneurial industry. The proposed framework contains five steps. First, we preprocess the articles to remove stop words and low-frequency words. Second, based on Convolutional Neural Network (CNN), we build a model, called News-CNN, to extract semantic features from news articles and transform each news article into a feature vector. Third, we convert the name entities in each news article into a feature vector. Fourth, we use the feature vectors derived by News-CNN and the feature vectors derived from name entities to compute the similarity between news articles and then group similar news articles into a document-based storyline. Also, we set some rules to remove redundant storylines. Finally, based on NMF, we propose a method to summarize each document-based storyline into a sentence-based storyline. The experiment results show our proposed method can generate better storylines than SteinerTree. Also, it can provide valuable business insights for users to implement their business strategies in the related industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:08:01Z (GMT). No. of bitstreams: 1 ntu-107-R05725006-1.pdf: 1717869 bytes, checksum: c780cbcaea6848762153e08e2fb46d37 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 Document summarization 4 2.2 Storyline generation 5 Chapter 3 The Proposed Framework 7 3.1 News preprocessing 7 3.2 News-CNN model 8 3.3 Name entities 12 3.4 Storyline generation 13 3.5 Storyline summarization 16 Chapter 4 Experiment Result 16 4.1 Dataset and metrics 16 4.2 Performance evaluation 19 4.3 Example storylines 23 Chapter 5 Conclusions and Future Work 27 References 30 Appendix A 35 | |
| dc.language.iso | en | |
| dc.subject | 故事鏈摘要 | zh_TW |
| dc.subject | 新創產業 | zh_TW |
| dc.subject | 故事鏈 | zh_TW |
| dc.subject | 卷積類神經網路 | zh_TW |
| dc.subject | Entrepreneurial industry | en |
| dc.subject | Storyline | en |
| dc.subject | Storyline summarization | en |
| dc.subject | Convolutional Neural Network | en |
| dc.title | 利用卷積神經網路串連新創產業故事鏈 | zh_TW |
| dc.title | Mining Storylines within Entrepreneurial Industry Based on Convolutional Neural Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉敦仁,許秉瑜 | |
| dc.subject.keyword | 故事鏈,新創產業,故事鏈摘要,卷積類神經網路, | zh_TW |
| dc.subject.keyword | Storyline,Entrepreneurial industry,Storyline summarization,Convolutional Neural Network, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201804397 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-12-26 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
