Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71226
Title: 以點擊流資料預測線上購物行為
Predicting Online Purchasing Behavior Using Clickstream Data
Authors: Ching-Lun Su
蘇敬倫
Advisor: 李宗穎(Chung-Ying Lee)
Keyword: 點擊流資料,K-Means,葡萄酒,搜尋成本,
Clickstream data,K-Means,wine,search cost,
Publication Year : 2018
Degree: 碩士
Abstract: 近十年來,網路購物趨勢蓬勃發展,如何利用網路購物過程產生的豐富數據,成為網路零售重要議題。網路零售商無法觀察到顧客的性別、年齡等實體特徵,卻可能透過瀏覽數據,分析顧客偏好,藉此預測購物行為。本研究以線上葡萄酒零售商的點擊流資料,探討瀏覽行為、顧客特徵與購買結果之間的關係。透過K-Means模型,將顧客依照選擇的篩選商品條件分群,發現分群結果與顧客所在地和性別有顯著關聯。此外,選擇越多篩選商品條件的顧客,購買量與總價越高。邏輯迴歸結果顯示,利用低價格區間作為篩選商品條件的顧客購買機率最高。
Online shopping has been booming in recent ten years. It is now a critical issue for online retailers how to make good use of the rich data generated in the process of online shopping. Online retailers cannot observe physical characteristics of the customers, such as gender and age. But they can use browsing data to analyze customers’ preferences and predict purchasing behavior. This study explores the relationships between browsing behavior, customer characteristics, and purchase results using clickstream data from the website of an online wine retailer. I use a K-Means model to cluster customers based on the filters they chose when browsing the website. I find the clustering results are significantly correlated with customers’ location and gender. Also, the more filters a customer choose before a purchase, the more wines they buy and the higher their order total. The results of logistic regressions show that customers who choose a low price range to filter products are most likely to buy.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71226
DOI: 10.6342/NTU201801937
Fulltext Rights: 有償授權
Appears in Collections:經濟學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
1.46 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved