請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71226完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宗穎(Chung-Ying Lee) | |
| dc.contributor.author | Ching-Lun Su | en |
| dc.contributor.author | 蘇敬倫 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:59:39Z | - |
| dc.date.available | 2021-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-26 | |
| dc.identifier.citation | Amblard, C., Tebby, C., & Giraud, G. (2011). Measurement of consumers' wine-related knowledge. Enometrica, 4(1), 33-41.
Chen, P. C. (2018). 使用機器學習技法預測消費者的購買行為: 以網站的點擊資料為例. 臺灣大學經濟學研究所學位論文, 1-36. Crone, T. M. (2005). An alternative definition of economic regions in the United States based on similarities in state business cycles. Review of Economics and Statistics, 87(4), 617-626. Friberg, R., & Grönqvist, E. (2012). Do expert reviews affect the demand for wine?. American Economic Journal: Applied Economics, 4(1), 193-211. Hauser, J. R., Liberali, G., & Urban, G. L. (2014). Website morphing 2.0: Switching costs, partial exposure, random exit, and when to morph. Management science, 60(6), 1594-1616. Hauser, J. R., Urban, G. L., Liberali, G., & Braun, M. (2009). Website morphing. Marketing Science, 28(2), 202-223. Hilger, J., Rafert, G., & Villas-Boas, S. (2011). Expert opinion and the demand for experience goods: an experimental approach in the retail wine market. Review of Economics and Statistics, 93(4), 1289-1296. Huo, Z., Ding, Y., Liu, S., Oesterreich, S., & Tseng, G. (2016). Meta-analytic framework for sparse K-Means to identify disease subtypes in multiple transcriptomic studies. Journal of the American Statistical Association, 111(513), 27-42. Koulayev, S. (2014). Search for differentiated products: identification and estimation. The RAND Journal of Economics, 45(3), 553-575. Lee, Y. C., Huang, S. C., Huang, C. H., & Wu, H. H. (2016). A new approach to identify high burnout medical staffs by kernel K-Means cluster analysis in a regional teaching hospital in Taiwan. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 53, 0046958016679306. Lynch Jr, J. G., & Ariely, D. (2000). Wine online: Search costs affect competition on price, quality, and distribution. Marketing science, 19(1), 83-103. MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297). Park, C. H., & Park, Y. H. (2016). Investigating purchase conversion by uncovering online visit patterns. Marketing Science, 35(6), 894-914 Rutz, O. J., & Bucklin, R. E. (2012). Does banner advertising affect browsing for brands? clickstream choice model says yes, for some. Quantitative Marketing and Economics, 10(2), 231-257. Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon. com. IEEE Internet Computing, 21(3), 12-18. Urban, G. L., Liberali, G., MacDonald, E., Bordley, R., & Hauser, J. R. (2013). Morphing banner advertising. Marketing Science, 33(1), 27-46. Vecchio, R., & Annunziata, A. (2013). Consumers’ attitudes towards sustainable food: a cluster analysis of Italian university students. New Medit, 12(2), 47-56. Witten, D. M., & Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), 713-726. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71226 | - |
| dc.description.abstract | 近十年來,網路購物趨勢蓬勃發展,如何利用網路購物過程產生的豐富數據,成為網路零售重要議題。網路零售商無法觀察到顧客的性別、年齡等實體特徵,卻可能透過瀏覽數據,分析顧客偏好,藉此預測購物行為。本研究以線上葡萄酒零售商的點擊流資料,探討瀏覽行為、顧客特徵與購買結果之間的關係。透過K-Means模型,將顧客依照選擇的篩選商品條件分群,發現分群結果與顧客所在地和性別有顯著關聯。此外,選擇越多篩選商品條件的顧客,購買量與總價越高。邏輯迴歸結果顯示,利用低價格區間作為篩選商品條件的顧客購買機率最高。 | zh_TW |
| dc.description.abstract | Online shopping has been booming in recent ten years. It is now a critical issue for online retailers how to make good use of the rich data generated in the process of online shopping. Online retailers cannot observe physical characteristics of the customers, such as gender and age. But they can use browsing data to analyze customers’ preferences and predict purchasing behavior. This study explores the relationships between browsing behavior, customer characteristics, and purchase results using clickstream data from the website of an online wine retailer. I use a K-Means model to cluster customers based on the filters they chose when browsing the website. I find the clustering results are significantly correlated with customers’ location and gender. Also, the more filters a customer choose before a purchase, the more wines they buy and the higher their order total. The results of logistic regressions show that customers who choose a low price range to filter products are most likely to buy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:59:39Z (GMT). No. of bitstreams: 1 ntu-107-R05323042-1.pdf: 1491212 bytes, checksum: 39caabfb637ad1ca1d5f86960cc2b402 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目錄 iii 圖目錄 iv 表格目錄 v 第一章 緒論 1 第二章 資料來源與分析 4 2.1 交易行為 4 2.2 瀏覽行為 6 2.3 會員特徵 7 2.4 資料限制 9 第三章 模型架構與結果 10 3.1 模型介紹 10 3.2分群結果與探討 14 3.3 預測購買機率 18 3.4 結論與建議 20 第四章 結論 21 參考文獻 22 附錄一 24 附錄二 25 | |
| dc.language.iso | zh-TW | |
| dc.subject | 葡萄酒 | zh_TW |
| dc.subject | 點擊流資料 | zh_TW |
| dc.subject | K-Means | zh_TW |
| dc.subject | 搜尋成本 | zh_TW |
| dc.subject | Clickstream data | en |
| dc.subject | K-Means | en |
| dc.subject | wine | en |
| dc.subject | search cost | en |
| dc.title | 以點擊流資料預測線上購物行為 | zh_TW |
| dc.title | Predicting Online Purchasing Behavior Using Clickstream Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林明仁(Ming-Jen Lin),朱建達(Jian-Da Zhu) | |
| dc.subject.keyword | 點擊流資料,K-Means,葡萄酒,搜尋成本, | zh_TW |
| dc.subject.keyword | Clickstream data,K-Means,wine,search cost, | en |
| dc.relation.page | 26 | |
| dc.identifier.doi | 10.6342/NTU201801937 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-26 | |
| dc.contributor.author-college | 社會科學院 | zh_TW |
| dc.contributor.author-dept | 經濟學研究所 | zh_TW |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
