Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69501
Title: 利用優質與劣質波動度進行波動度預測
Volatility Forecasting with Good and Bad Components
Authors: Chen-Yuan Chung
鍾震遠
Advisor: 王耀輝
Keyword: 波動度預測,優質已實現變異數,劣質已實現變異數,優質隱含變異數,劣質隱含變異數,
Volatility forecasting,Good realized variance,Bad realized variance,Good implied variance,Bad implied variance,
Publication Year : 2018
Degree: 碩士
Abstract: 本篇論文以拆解變異數的方式延伸文獻上的波動度模型,並使用延伸之模型去預測S&P500指數的波動度。我們參考Corsi (2009)提出的HAR模型和Blair et al. (2001)提出的ARCH模型進行延伸,並將延伸後的多個模型分別歸類為HAR模型類別和ARCH模型類別。樣本內估計結果顯示,在HAR模型類別中未來波動度和劣質波動度的相關性高於優質波動度,在ARCH模型類別中各種延伸與拆解都能顯著提升模型表現。樣本外預測結果顯示,在HAR模型類別中將隱含變異數加入HAR模型預測效果最好,在ARCH模型類別中將已實現變異數或隱含變異數加入Glosten et al. (1993)所提出的GJR模型中預測表現最佳。
We forecast the volatility of the S&P500 Index by extending models through the way of decomposing variance measures into good and bad components. HAR model of Corsi (2009) and ARCH models shown in Blair et al. (2001) are extended in HAR model class and ARCH model class respectively. The in-sample estimation shows that future volatility is more strongly related to the volatility of past negative returns than to that of positive returns in HAR model class, and each kind of decomposition and extension in ARCH models leads to significant model improvement. For out-of-sample forecasting, we find that adding implied variance in HAR models provides the most accurate forecasts in HAR model class and that the inclusion of realized variance or implied variance as an explanatory variable in the GJR model outperforms other models in ARCH model class.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69501
DOI: 10.6342/NTU201801231
Fulltext Rights: 有償授權
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
618.95 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved