請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王耀輝 | |
| dc.contributor.author | Chen-Yuan Chung | en |
| dc.contributor.author | 鍾震遠 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:17:30Z | - |
| dc.date.available | 2018-07-03 | |
| dc.date.copyright | 2018-07-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-02 | |
| dc.identifier.citation | References
1. Andersen, T. G., Bollerslev, T., Diebold, F. X. and Ebens, H. (2001). The distribution of realized stock return volatility, Journal of Financial Economics 61: 43–76. 2. Bakshi, G. and Madan, D. (2000). Spanning and derivative-security valuation, Journal of Financial Economics 55: 205–238. 3. Bakshi, G., Kapadia, N. and Madan, D. (2003). Stock return characteristics, skew laws, and the differential pricing of individual equity options, Review of Financial Studies 16(1): 101 - 143. 4. Barndorff-Nielsen, O. E., Kinnebrock, S. and Shephard, N. (2010). Measuring downside risk: Realised semivariance, Working Paper. 5. Bekaert, G., Engstrom, E. and Ermolov, A. (2015). Bad environments, good environments: A non-gaussian asymmetric volatility model, Journal of Econometrics 186: 258–275. 6. Bera, A. K. and Higgins, M. L. (1993). ARCH models: properties, estimation and testing, Journal of Economic Surveys 7: 305–362. 7. Blair, B. J., Poon S. H. and Taylor S. J. (2001). Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns, Journal of Econometrics 105: 5–26. 8. Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and rates of returns, Review of Economics and Statistics 69: 542–547. 9. Bollerslev, T., Litvinova, J. and Tauchen G. (2006). Leverage and volatility feedback effects in high-frequency data, Journal of Financial Econometrics 4: 353-384. 10. Bollerslev, T., Zhengzi, L. S. and Zhao, B. (2017). Good volatility, bad volatility, and the cross-section of stock returns, Working Paper. 11. Chen, X. and Ghysels, E. (2011). News—good or bad—and its impact on volatility predictions over multiple horizons, Review of Financial Studies 24: 46–81. 12. Corsi, F. (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics 7(2): 174 - 196. 13. Feunou, B., Aliouchkin, R. L., Tédongap, R. and Xu, L. (2017). Variance premium, downside risk, and expected stock returns, Working Paper. 14. Feunou, B., Jahan-Parvar, M. R. and Tédongap, R. (2013). Modeling market downside volatility, Review of Finance 17: 443–481. 15. Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance 48: 1779–1801. 16. Kilic, M. and Shaliastovich, I. (forthcoming). Good and bad variance premia and expected returns, Management Science. 17. Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59: 347–370. 18. Patton, A. and Sheppard, K. (2015). good volatility, bad volatility: Signed jumps and the persistence of volatility, Review of Economics and Statistics 97(3): 683-697. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69501 | - |
| dc.description.abstract | 本篇論文以拆解變異數的方式延伸文獻上的波動度模型,並使用延伸之模型去預測S&P500指數的波動度。我們參考Corsi (2009)提出的HAR模型和Blair et al. (2001)提出的ARCH模型進行延伸,並將延伸後的多個模型分別歸類為HAR模型類別和ARCH模型類別。樣本內估計結果顯示,在HAR模型類別中未來波動度和劣質波動度的相關性高於優質波動度,在ARCH模型類別中各種延伸與拆解都能顯著提升模型表現。樣本外預測結果顯示,在HAR模型類別中將隱含變異數加入HAR模型預測效果最好,在ARCH模型類別中將已實現變異數或隱含變異數加入Glosten et al. (1993)所提出的GJR模型中預測表現最佳。 | zh_TW |
| dc.description.abstract | We forecast the volatility of the S&P500 Index by extending models through the way of decomposing variance measures into good and bad components. HAR model of Corsi (2009) and ARCH models shown in Blair et al. (2001) are extended in HAR model class and ARCH model class respectively. The in-sample estimation shows that future volatility is more strongly related to the volatility of past negative returns than to that of positive returns in HAR model class, and each kind of decomposition and extension in ARCH models leads to significant model improvement. For out-of-sample forecasting, we find that adding implied variance in HAR models provides the most accurate forecasts in HAR model class and that the inclusion of realized variance or implied variance as an explanatory variable in the GJR model outperforms other models in ARCH model class. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:17:30Z (GMT). No. of bitstreams: 1 ntu-107-R05723027-1.pdf: 633802 bytes, checksum: 3e64ad26262ea2bea8677bd2d68fac27 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Content
1 Introduction 1 2 Variance and volatility measures 4 2.1 Good and bad realized variances 4 2.2 Good and bad implied variances 4 2.3 Adjustment for comparison 6 3 Data 7 3.1 Primary data set 7 3.2 Long memory property of realized volatility 11 4 Empirical models 14 4.1 HAR model class 14 4.2 ARCH model Class 16 5 Empirical results 18 5.1 In-sample forecasting 18 5.2 Out-of-sample forecasting 27 6 Conclusion 36 Reference 37 | |
| dc.language.iso | en | |
| dc.subject | 劣質隱含變異數 | zh_TW |
| dc.subject | 優質隱含變異數 | zh_TW |
| dc.subject | 劣質已實現變異數 | zh_TW |
| dc.subject | 優質已實現變異數 | zh_TW |
| dc.subject | 波動度預測 | zh_TW |
| dc.subject | Volatility forecasting | en |
| dc.subject | Good realized variance | en |
| dc.subject | Bad realized variance | en |
| dc.subject | Good implied variance | en |
| dc.subject | Bad implied variance | en |
| dc.title | 利用優質與劣質波動度進行波動度預測 | zh_TW |
| dc.title | Volatility Forecasting with Good and Bad Components | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張森林,石百達 | |
| dc.subject.keyword | 波動度預測,優質已實現變異數,劣質已實現變異數,優質隱含變異數,劣質隱含變異數, | zh_TW |
| dc.subject.keyword | Volatility forecasting,Good realized variance,Bad realized variance,Good implied variance,Bad implied variance, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201801231 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-03 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 618.95 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
