Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69156
Title: 半監督對抗式生成網絡實現多場域影像轉譯
SemiStarGAN: Semi-Supervised Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Authors: Shu-Yu Hsu
許書宇
Advisor: 許永真
Keyword: 對抗式生成網絡,半監督式學習,多場域影像轉譯,
Generative Adversarial Network,Semi-Supervised Learning,Multi-Domain Image-to-Image Translation,
Publication Year : 2018
Degree: 碩士
Abstract: 多場域影像轉譯 (multi-domain image-to-image translation) 是將影像由一個場域(domain)轉譯到其他多個場域的研究。近年來,許多影像轉譯的研究已經能夠利用生成方式對抗網路(generative adversarial network)的方法,從具有場域標記的資料中,學習場域之間的關係,建立複雜的生成模型。然而,這類型的演算法的學習成效仰賴於大量的標記資料,所以建構這樣的模型需要花費很高的時間與成本。
為了降低成本,本論文提出 SemiStarGAN,結合兩個半監督式學習技術: self ensembling 與 pseudo labeling,並提出名為 Y model 的新網絡參數共享方式, 將網絡中的判別器(discriminator) 與輔助分類器(auxiliary classifier) 的參數部分共享,以提升輔助分類器的泛化能力及穩定性。
本論文設計了人臉特徵轉譯的實驗,比較 StarGAN 與 SemiStarGAN 在不同標記資料量下的生成表現。實驗結果證實了我們所提出來的方法,僅需較少的標記資料,即可達到與 StarGAN 同等的轉譯效果。
Recent studies have shown significant advance for multi-domain image-to-image translation, and generative adversarial networks (GANs) are widely used to address this problem. However, existing methods all require a large number of domain-labeled images to train an effective image generator, but it may take time and effort to collect a large number of labeled data for real-world problems. In this thesis, we propose SemiStarGAN, a semi-supervised GAN network to tackle this issue. The proposed method utilizes unlabeled images by incorporating a novel discriminator/classifier network architecture Y model, and two existing semi-supervised learning techniques---pseudo labeling and self-ensembling. Experimental results on the CelebA dataset using domains of facial attributes show that the proposed method achieves comparable performance with state-of-the-art methods using considerably less labeled training images.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69156
DOI: 10.6342/NTU201801427
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
4.82 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved