請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69156完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許永真 | |
| dc.contributor.author | Shu-Yu Hsu | en |
| dc.contributor.author | 許書宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:09:49Z | - |
| dc.date.available | 2021-07-26 | |
| dc.date.copyright | 2018-07-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-20 | |
| dc.identifier.citation | [1] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. 2006.
[2] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. StarGAN: Unified gener- ative adversarial networks for multi-domain image-to-image translation. In CVPR, 2018. [3]Z.Dai,Z.Yang,F.Yang,W.W.Cohen,andR.Salakhutdinov.GoodSemi-supervised Learning that Requires a Bad GAN. In NIPS. 2017. [4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009. [5] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, June 2016. [6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS. 2014. [7] Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In NIPS. 2005. [8] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of wasserstein gans. In NIPS, 2017. [9] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. [10] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006. [11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with con- ditional adversarial networks. In CVPR, 2017. [12] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016. [13] W.-C. Kang, C. Fang, Z. Wang, and J. McAuley. Visually-Aware Fashion Recom- mendation and Design with Generative Image Models. 2017. [14] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to discover cross-domain relations with generative adversarial networks. In ICML, 2017. [15] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. In ICML, 2015. [16] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In ICLR, 2014. [17] A. Krause, P. Perona, and R. G. Gomes. Discriminative clustering by regularized information maximization. In NIPS. 2010. [18] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017. [19] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learn- ing,ICML, 2013. [20] C. Li and M. Wand. Precomputed real-time texture synthesis with markovian gen- erative adversarial networks. In ECCV, 2016. [21] C. Li, K. Xu, J. Zhu, and B. Zhang. Triple generative adversarial nets. In NIPS. 2017. [22] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation net- works. In NIPS. 2017. [23] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. In NIPS. 2016. [24] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In ICCV, 2015. [25] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. Are GANs Created Equal? A Large-Scale Study. ArXiv e-prints, Nov. 2017. [26] M. Mirza and S. Osindero. Conditional generative adversarial nets. ArXiv e-prints, 2014. [27] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning. ArXiv e- prints, Apr. 2017. [28] A. Odena. Semi-supervised learning with generative adversarial networks. In work- shop at ICML, 2016. [29] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning with ladder networks. In NIPS. 2015. [30] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to image synthesis. In ICML, 2016. [31] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In MICCAI, 2015. [32] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In NIPS, 2016. [33] Y.-S. Shih, K.-Y. Chang, H.-T. Lin, and M. Sun. Compatibility family learning for item recommendation and generation. In AAAI, 2018. [34] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014. [35] J. T. Springenberg. Unsupervised and semi-supervised learning with categorical generative adversarial networks. In ICLR, 2016. [36]C.Szegedy,V.Vanhoucke,S.Ioffe,J.Shlens,andZ.Wojna.Rethinkingtheinception architecture for computer vision. In CVPR, 2016. [37] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation. In ICLR, 2017. [38] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed- forward synthesis of textures and stylized images. In ICML, 2016. [39] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing ingredient for fast stylization. ArXiv e-prints, July 2016. [40] Z. Yi, H. Zhang, P. Tan, and M. Gong. DualGAN: Unsupervised dual learning for image-to-image translation. In ICCV, 2017. [41] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014. [42] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In ICCV, 2017. [43] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networkss. In ICCV, 2017. [44] S. Zhu, S. Fidler, R. Urtasun, D. Lin, and C. L. Chen. Be your own prada: Fashion synthesis with structural coherence. In ICCV, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69156 | - |
| dc.description.abstract | 多場域影像轉譯 (multi-domain image-to-image translation) 是將影像由一個場域(domain)轉譯到其他多個場域的研究。近年來,許多影像轉譯的研究已經能夠利用生成方式對抗網路(generative adversarial network)的方法,從具有場域標記的資料中,學習場域之間的關係,建立複雜的生成模型。然而,這類型的演算法的學習成效仰賴於大量的標記資料,所以建構這樣的模型需要花費很高的時間與成本。
為了降低成本,本論文提出 SemiStarGAN,結合兩個半監督式學習技術: self ensembling 與 pseudo labeling,並提出名為 Y model 的新網絡參數共享方式, 將網絡中的判別器(discriminator) 與輔助分類器(auxiliary classifier) 的參數部分共享,以提升輔助分類器的泛化能力及穩定性。 本論文設計了人臉特徵轉譯的實驗,比較 StarGAN 與 SemiStarGAN 在不同標記資料量下的生成表現。實驗結果證實了我們所提出來的方法,僅需較少的標記資料,即可達到與 StarGAN 同等的轉譯效果。 | zh_TW |
| dc.description.abstract | Recent studies have shown significant advance for multi-domain image-to-image translation, and generative adversarial networks (GANs) are widely used to address this problem. However, existing methods all require a large number of domain-labeled images to train an effective image generator, but it may take time and effort to collect a large number of labeled data for real-world problems. In this thesis, we propose SemiStarGAN, a semi-supervised GAN network to tackle this issue. The proposed method utilizes unlabeled images by incorporating a novel discriminator/classifier network architecture Y model, and two existing semi-supervised learning techniques---pseudo labeling and self-ensembling. Experimental results on the CelebA dataset using domains of facial attributes show that the proposed method achieves comparable performance with state-of-the-art methods using considerably less labeled training images. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:09:49Z (GMT). No. of bitstreams: 1 ntu-107-R05922059-1.pdf: 4939377 bytes, checksum: 4c199a0ff23fafcd6d8281b18c5cefc4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 1 Introduction 1 1.1 BackgroundandMotivation ........................ 1 1.2 ResearchObjective ............................. 2 1.3 ThesisOrganization............................. 3 2 Literature Review 5 2.1 GenerativeAdversarialNetwork ...................... 5 2.2 Image-to-ImageTranslation ........................ 6 2.2.1 GAN Based Paired Image-to-Image Translation . . . . . . . . . . 7 2.2.2 GAN Based Unpaired Image-to-Image Translation . . . . . . . . 7 2.3 Semi-SupervisedLearning ......................... 8 2.3.1 Desinging Distinctive Network Architectures . . . . . . . . . . . 9 2.3.2 Regularization and Data Augmentation Based Approaches . . . . 9 2.3.3 Semi-Supervised and Generative Adversarial Network . . . . . . 10 3 Semi-Supervised Multi-Domain Image-to-Image Translation 13 3.1 ProblemDefinition ............................. 13 3.2 SymbolTable................................ 14 3.3 ProposedMethod .............................. 16 3.3.1 GANObjective........................... 16 3.3.2 Domain Classification Loss and Self-Ensembling . . . . . . . . . 17 3.3.3 Cycle Consistency and Pseudo Cycle Consistency Loss . . . . . . 18 3.3.4 Y Model: Splitting Classifier and Discriminator. . . . . . . . . . 19 3.3.5 FullObjective............................ 21 3.3.6 Network Architecture and Implementation . . . . . . . . . . . . 22 4 Experiments 25 4.1 Experimental Setup............................. 25 4.1.1 DataSets .............................. 25 4.1.2 EvaluationMetrics ......................... 27 4.2 TrainingDetail ............................... 28 4.3 Experimental Results ............................ 29 4.3.1 Experimentonthreedomainsofhaircolors. . . . . . . . . . . . . 29 4.3.2 Experiment on 12 domains of hair colors, age, and gender. . . . . 35 4.4 TheEffectivenessofNetworkArchitecture . . . . . . . . . . . . . . . . 42 4.4.1 TheEffectivenessoftheYModel.................. 42 4.4.2 TheArchitectureoftheDiscriminator . . . . . . . . . . . . . . . 43 5 Conclusion 47 5.1 SummaryandContribution......................... 47 5.2 Restrictions ................................. 48 5.3 FutureStudies................................ 48 Bibliography 49 | |
| dc.language.iso | en | |
| dc.subject | 對抗式生成網絡 | zh_TW |
| dc.subject | 多場域影像轉譯 | zh_TW |
| dc.subject | 半監督式學習 | zh_TW |
| dc.subject | Multi-Domain Image-to-Image Translation | en |
| dc.subject | Generative Adversarial Network | en |
| dc.subject | Semi-Supervised Learning | en |
| dc.title | 半監督對抗式生成網絡實現多場域影像轉譯 | zh_TW |
| dc.title | SemiStarGAN: Semi-Supervised Generative Adversarial Networks for Multi-Domain Image-to-Image Translation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李宏毅,張智星,廖弘源,徐宏民 | |
| dc.subject.keyword | 對抗式生成網絡,半監督式學習,多場域影像轉譯, | zh_TW |
| dc.subject.keyword | Generative Adversarial Network,Semi-Supervised Learning,Multi-Domain Image-to-Image Translation, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201801427 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
