Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66420
Title: 應用密度估計演算法分析大型醫學資料庫
Application of Density Estimation Algorithms in Analysis of Large Medical Databases
Authors: Meng-Han Yang
楊孟翰
Advisor: 歐陽彥正
Keyword: 密度估計演算法,RVKDE,G2DE,偏頭痛,共病關聯,全民健康保險研究資料庫,
Density estimation algorithm,RVKDE,G2DE,migraine,co-morbidity,NHIRD,
Publication Year : 2012
Degree: 博士
Abstract: 近年來,由於資料的收集與統整資訊化的成果,造成大型臨床醫學資料庫,與生物醫學資訊學的出現;而除傳統統計分析方法外,更引進機器學習概念,著重自動化資料處理和智慧決策。在本論文,我們提出一應用密度估計演算法的資料分析過程,來調查偏頭痛與眾多疾病之間的共病關聯。這項研究的主要目的旨在發展一個新的分析過程,可以從大型醫療資料庫,發掘有見地的知識。整個分析過程分為兩個階段:在第一階段,一種名為RVKDE 的核心密度估計演算法將用以確定「興趣樣本」。然後,在第二階段,另一種植基於廣義高斯元件的密度估計演算法,G2DE,用以提供樣本分群的摘要說明。偏頭痛是一種流行,但經常被低估的神經功能障礙,因此我們希冀發掘其與多種身心疾病的共病關聯。臺灣的全民健康保險研究資料庫(NHIRD)被用作這項研究的資料來源,其主要優勢為一個植基於全國人口範圍的大型醫療保險申報資料庫。根據本論文提出的兩階段分析過程,分析偏頭痛共病關聯而取得的結果,可以有效識別特徵鮮明的「興趣樣本」。此外,所識別樣本進一步的分群,其特性符合最近生物醫學研究中發現的知識。因此,本論文所提出的分析過程,可以針對發病機制提供有價值的線索,從而促進適當治療策略的發展。
Current trends in biomedical informatics have been toward developing automatic data processing and intelligent decision-making systems. This thesis proposes a method of analyzing data based on density estimation in order to investigate co-morbidities associated with migraine and suspected diseases. The primary objective was to develop a means of analysis capable of providing insight into knowledge obtained from large medical databases. In the first stage of analysis, a kernel density estimation algorithm named RVKDE was used to identify subjects of
interest. In the following stage, a density estimation algorithm based on generalized Gaussian components and named G2DE was used to provide a summarized description of the distribution.
Migraine is a prevalent but largely overlooked neurological disorder; therefore, this study sought to mine associated co-morbidities, such as certain psychiatric and somatic illnesses. Data was obtained from the large population-based medical claims records in the National Health Insurance Research Database (NHIRD) of Taiwan. Our results demonstrate the effectiveness of using the proposed analysis procedure to identify clusters of subjects sharing distinctive characteristics. Furthermore, these characteristics are related to a number of recent discoveries in biomedical research. The proposed analysis procedure is capable of providing valuable clues into the pathogenesis of diseases as well as facilitating the development of effective treatment strategies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66420
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
4.76 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved