請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66420完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正 | |
| dc.contributor.author | Meng-Han Yang | en |
| dc.contributor.author | 楊孟翰 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:34:55Z | - |
| dc.date.available | 2012-03-19 | |
| dc.date.copyright | 2012-03-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-02-07 | |
| dc.identifier.citation | 1. Maglogiannis I: Introducing Intelligence in Electronic Healthcare Systems:
State of the Art and Future Trends. In: Artificial Intelligence An International Perspective. Edited by Bramer M, vol. 5640: Springer Berlin / Heidelberg; 2009: 71-90. 2. Menachemi N, Perkins RM, van Durme DJ, Brooks RG: Examining the adoption of electronic health records and personal digital assistants by family physicians in Florida. Informatics in primary care 2006, 14(1):1-9. 3. Himes BE, Dai Y, Kohane IS, Weiss ST, Ramoni MF: Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J Am Med Inform Assoc 2009, 16(3):371-379. 4. Lugardon S, Roussel H, Sciortino V, Montastruc JL, Lapeyre-Mestre M: Triptan use and risk of cardiovascular events: a nested-case-control study from the French health system database. European journal of clinical pharmacology 2007, 63(8):801-807. 5. Youngho J, Jiyoung K, Jaeil P, Peom P: Design and implementation of the Smart Healthcare Frame Based on Pervasive Computing Technology. In: The 9th International Conference on Advanced Communication Technology: 12-14 Feb 2007; 2007: 349-352. 6. Paganelli F, Spinicci E, Giuli D: ERMHAN: A Context-Aware Service Platform to Support Continuous Care Networks for Home-Based Assistance. International journal of telemedicine and applications 2008:867639. 7. Sharmin M, Ahmed S, Ahamed SI, Haque MM, Khan AJ: Healthcare aide: towards a virtual assistant for doctors using pervasive middleware. In: Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops: 13-17 March 2006; 2006: 6 pp.-495. 8. Doukas C, Maglogiannis I, Tragas P, Liapis D, Yovanof G: Patient Fall Detection using Support Vector Machines. In: Artificial Intelligence and Innovations 2007: from Theory to Applications. Edited by Boukis C, Pnevmatikakis A, Polymenakos L, vol. 247: Springer Boston; 2007: 147-156. 9. Milenkovi A, Otto C, Jovanov E: Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications 2006, 29(13-14):2521-2533. 10. Obenshain MK: Application of data mining techniques to healthcare data. Infect Control Hosp Epidemiol 2004, 25(8):690-695. 11. Frawley WJ, Shapiro P, Matheus CJ: Knowledge discovery in databases - an overview. Ai Magazine 1992, 13:57-70. 12. Palaniappan S, Awang R: Intelligent heart disease prediction system using data mining techniques. In: IEEE/ACS International Conference on Computer Systems and Applications: March 31-April 4 2008; 2008: 108-115. 13. Lee S-M: Applying Bayesian network approaches to study health outcomes. Baltimore: University of Maryland; 2003. 14. Chen TJ, Chou LF, Hwang SJ: Application of a data-mining technique to analyze coprescription patterns for antacids in Taiwan. Clinical therapeutics 2003, 25(9):2453-2463. 15. Tai YM, Chiu HW: Comorbidity study of ADHD: applying association rule mining (ARM) to National Health Insurance Database of Taiwan. International journal of medical informatics 2009, 78(12):e75-83. 16. Futschik ME, Sullivan M, Reeve A, Kasabov N: Prediction of clinical behaviour and treatment for cancers. Applied bioinformatics 2003, 2(3 Suppl):S53-58. 17. Lancashire LJ, Mian S, Ellis IO, Rees RC, Ball GR: Current developments in the analysis of proteomic data: Artificial neural network data mining techniques for the identification of proteomic biomarkers related to breast cancer. Current Proteomics 2005, 2(1):15-29. 18. Cristianini N, Shawe-Taylor J: An introduction to support Vector Machines: and other kernel-based learning methods. New York: Cambridge University Press; 2000. 19. Cortes C, Vapnik V: Support-vector networks. Machine Learning 1995, 20(3):273-297. 20. Li L, Tang H, Wu Z, Gong J, Gruidl M, Zou J, Tockman M, Clark RA: Data mining techniques for cancer detection using serum proteomic profiling. Artificial intelligence in medicine 2004, 32(2):71-83. 21. Maglogiannis IG, Zafiropoulos EP: Characterization of digital medical images utilizing support vector machines. BMC medical informatics and decision making 2004, 4:4. 22. Yang J, Nugroho AS, Yamauchi K, Yoshioka K, Zheng J, Wang K, Kato K, Kuroyanagi S, Iwata A: Efficacy of interferon treatment for chronic hepatitis C predicted by feature subset selection and support vector machine. Journal of medical systems 2007, 31(2):117-123. 23. Niederkohr RD, Levin LA: Management of the patient with suspected temporal arteritis a decision-analytic approach. Ophthalmology 2005, 112(5):744-756. 24. Markey MK, Tourassi GD, Floyd CE, Jr.: Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer. Proteomics 2003, 3(9):1678-1679. 25. The NHI web site [http://www.nhi.gov.tw] 26. The NHIRD web site [http://w3.nhri.org.tw/nhird/] 27. The International Classification of Headache Disorders: 2nd edition. Headache Classification Committee of the International Headache Society. Cephalalgia 2004, 24 Suppl 1:9-160. 28. Buse DC, Manack A, Serrano D, Turkel C, Lipton RB: Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. Journal of neurology, neurosurgery, and psychiatry 2010, 81(4):428-432. 29. Samaan Z, Farmer A, Craddock N, Jones L, Korszun A, Owen M, McGuffin P: Migraine in recurrent depression: case-control study. Br J Psychiatry 2009, 194(4):350-354. 30. Beghi E, Bussone G, D'Amico D, Cortelli P, Cevoli S, Manzoni GC, Torelli P, Tonini MC, Allais G, De Simone R et al: Headache, anxiety and depressive disorders: the HADAS study. The journal of headache and pain 2010, 11(2):141-150. 31. Stam AH, de Vries B, Janssens AC, Vanmolkot KR, Aulchenko YS, Henneman P, Oostra BA, Frants RR, van den Maagdenberg AM, Ferrari MD et al: Shared genetic factors in migraine and depression: evidence from a genetic isolate. Neurology 2010, 74(4):288-294. 32. McWilliams LA, Goodwin RD, Cox BJ: Depression and anxiety associated with three pain conditions: results from a nationally representative sample. Pain 2004, 111(1-2):77-83. 33. Dilsaver SC, Benazzi F, Oedegaard KJ, Fasmer OB, Akiskal HS: Is a family history of bipolar disorder a risk factor for migraine among affectively ill patients? Psychopathology 2009, 42(2):119-123. 34. Low NC, Du Fort GG, Cervantes P: Prevalence, clinical correlates, and treatment of migraine in bipolar disorder. Headache 2003, 43(9):940-949. 35. Beckmann YY, Seckin M, Manavgat AI, Zorlu N: Headaches related to psychoactive substance use. Clinical neurology and neurosurgery 2012. 36. Aamodt AH, Stovner LJ, Langhammer A, Hagen K, Zwart JA: Is headache related to asthma, hay fever, and chronic bronchitis? The Head-HUNT Study. Headache 2007, 47(2):204-212. 37. Le H, Tfelt-Hansen P, Russell MB, Skytthe A, Kyvik KO, Olesen J: Co-morbidity of migraine with somatic disease in a large population-based study. Cephalalgia 2011, 31(1):43-64. 38. Becker C, Brobert GP, Almqvist PM, Johansson S, Jick SS, Meier CR: The risk ofnewly diagnosed asthma in migraineurs with or without previous triptan prescriptions. Headache 2008, 48(4):606-610. 39. Cady RK, Schreiber CP: Sinus headache or migraine? Considerations in making a differential diagnosis. Neurology 2002, 58(9 Suppl 6):S10-14. 40. Cady RK, Dodick DW, Levine HL, Schreiber CP, Eross EJ, Setzen M, Blumenthal HJ, Lumry WR, Berman GD, Durham PL: Sinus headache: a neurology, otolaryngology, allergy, and primary care consensus on diagnosis and treatment. Mayo Clinic proceedings 2005, 80(7):908-916. 41. Radtke A, Lempert T, Gresty MA, Brookes GB, Bronstein AM, Neuhauser H: Migraine and Meniere's disease: is there a link? Neurology 2002, 59(11):1700-1704. 42. Cha YH, Brodsky J, Ishiyama G, Sabatti C, Baloh RW: The relevance of migraine in patients with Meniere's disease. Acta Otolaryngol 2007, 127(12):1241-1245. 43. Hagen K, Einarsen C, Zwart JA, Svebak S, Bovim G: The co-occurrence of headache and musculoskeletal symptoms amongst 51 050 adults in Norway. Eur J Neurol 2002, 9(5):527-533. 44. de Tommaso M, Sardaro M, Serpino C, Costantini F, Vecchio E, Prudenzano MP, Lamberti P, Livrea P: Fibromyalgia comorbidity in primary headaches. Cephalalgia 2009, 29(4):453-464. 45. Ifergane G, Buskila D, Simiseshvely N, Zeev K, Cohen H: Prevalence of fibromyalgia syndrome in migraine patients. Cephalalgia 2006, 26(4):451-456. 46. Kalaydjian A, Merikangas K: Physical and mental comorbidity of headache in a nationally representative sample of US adults. Psychosomatic medicine 2008, 70(7):773-780. 47. Bigal ME, Kurth T, Santanello N, Buse D, Golden W, Robbins M, Lipton RB: Migraine and cardiovascular disease: a population-based study. Neurology 2010, 74(8):628-635. 48. Burn WK, Machin D, Waters WE: Prevalence of migraine in patients with diabetes. Br Med J (Clin Res Ed) 1984, 289(6458):1579-1580. 49. Moreau T, Manceau E, Giroud-Baleydier F, Dumas R, Giroud M: Headache in hypothyroidism. Prevalence and outcome under thyroid hormone therapy. Cephalalgia 1998, 18(10):687-689. 50. Hagen K, Bjoro T, Zwart JA, Vatten L, Stovner LJ, Bovim G: Low headache prevalence amongst women with high TSH values. Eur J Neurol 2001, 8(6):693-699. 51. Rist PM, Tzourio C, Kurth T: Associations between lipid levels and migraine: cross-sectional analysis in the epidemiology of vascular ageing study. Cephalalgia 2011, 31(14):1459-1465. 52. Peterlin BL, Rosso AL, Rapoport AM, Scher AI: Obesity and migraine: the effect of age, gender and adipose tissue distribution. Headache 2010, 50(1):52-62. 53. Winter AC, Berger K, Buring JE, Kurth T: Body mass index, migraine, migraine frequency and migraine features in women. Cephalalgia 2009, 29(2):269-278. 54. Stang PE, Carson AP, Rose KM, Mo J, Ephross SA, Shahar E, Szklo M: Headache, cerebrovascular symptoms, and stroke: the Atherosclerosis Risk in Communities Study. Neurology 2005, 64(9):1573-1577. 55. Kurth T, Gaziano JM, Cook NR, Logroscino G, Diener HC, Buring JE: Migraine and risk of cardiovascular disease in women. JAMA 2006, 296(3):283-291. 56. Kurth T, Schurks M, Logroscino G, Gaziano JM, Buring JE: Migraine, vascular risk, and cardiovascular events in women: prospective cohort study. BMJ 2008, 337:a636. 57. Nuyen J, Schellevis FG, Satariano WA, Spreeuwenberg PM, Birkner MD, van den Bos GA, Groenewegen PP: Comorbidity was associated with neurologic and psychiatric diseases: a general practice-based controlled study. Journal of clinical epidemiology 2006, 59(12):1274-1284. 58. Deprez L, Peeters K, Van Paesschen W, Claeys KG, Claes LR, Suls A, Audenaert D, Van Dyck T, Goossens D, Del-Favero J et al: Familial occipitotemporal lobe epilepsy and migraine with visual aura: linkage to chromosome 9q. Neurology 2007, 68(23):1995-2002. 59. Tikka-Kleemola P, Artto V, Vepsalainen S, Sobel EM, Raty S, Kaunisto MA, Anttila V, Hamalainen E, Sumelahti ML, Ilmavirta M et al: A visual migraine aura locus maps to 9q21-q22. Neurology 2010, 74(15):1171-1177. 60. Welch BJ, Graybeal D, Moe OW, Maalouf NM, Sakhaee K: Biochemical and stone-risk profiles with topiramate treatment. Am J Kidney Dis 2006, 48(4):555-563. 61. Kaplon DM, Penniston KL, Nakada SY: Patients with and without prior urolithiasis have hypocitraturia and incident kidney stones while on topiramate. Urology 2011, 77(2):295-298. 62. Hong L, Zhao Y, Han Y, Guo W, Wang J, Li X, Fan D: Reversal of migraine symptoms by Helicobacter pylori eradication therapy in patients with hepatitis-B-related liver cirrhosis. Helicobacter 2007, 12(4):306-308. 63. Rozen TD, Fishman RS: Cluster headache in the United States of America: demographics, clinical characteristics, triggers, suicidality, and personal burden. Headache 2012, 52(1):99-113. 64. Kilic SS, Donmez O, Sloan EA, Elizondo LI, Huang C, Andre JL, Bogdanovic R, Cockfield S, Cordeiro I, Deschenes G et al: Association of migraine-like headaches with Schimke immuno-osseous dysplasia. American journal of medical genetics Part A 2005, 135(2):206-210. 65. Silverman BW: Density Estimation for Statistics and Data Analysis (Monographs on Statistics & Applied Probability). London: Chapman and Hall/CRC; 1986. 66. Abramson IS: On Bandwidth Variation in Kernel Estimates-A Square Root Law. The Annals of Statistics 1982, 10(4):1217-1223. 67. Terrell GR, Scott DW: Variable Kernel Density Estimation. The Annals of Statistics 1992, 20(3):1236-1265. 68. Breiman L, Meisel W, Purcell E: Variable Kernel Estimates of Multivariate Densities. Technometrics 1977, 19(2):135-144. 69. Lachenbruch PA, Goldstein M: Discriminant Analysis. Biometrics 1979, 35(1):69-85. 70. Lowe D: Similarity metric learning for a variable-kernel classifier. Neural Comput 1995, 7(1):72-85. 71. Chang DT, Chen CY, Chung WC, Oyang YJ, Juan HF, Huang HC: ProteMiner-SSM: a web server for efficient analysis of similar protein tertiary substructures. Nucleic acids research 2004, 32(Web Server issue):W76-82. 72. Jain AK, Duin RPW, Jianchang M: Statistical pattern recognition: a review. Pattern Analysis and Machine Intelligence, IEEE Transactions on 2000, 22(1):4-37. 73. Oyang Y-J, Hwang S-C, Ou Y-Y, Chen C-Y, Chen Z-W: Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Trans on Neural Netw 2005, 16(1):225-236. 74. Hsieh C-H, Chang DTH, Oyang Y-J: Data classification with a generalized Gaussian components based density estimation algorithm. In: Proc International Joint Conference on Neural Networks: 14-19 June 2009; 2009: 1259-1266. 75. E A: The Gamma Function. New York: Holt, Rinehart and Winston; 1964. 76. Chang DT, Oyang YJ, Lin JH: MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic acids research 2005, 33(Web Server issue):W233-238. 77. Frank E, Wang Y, Inglis S, Holmes G, Witten IH: Using Model Trees for Classification. Machine Learning 1998, 32(1):63-76. 78. Viera AJ: Odds ratios and risk ratios: what's the difference and why does it matter? Southern medical journal 2008, 101(7):730-734. 79. Hosmer DW, Lemeshow S: Applied Logistic Regression, 2nd edn. New York: John Wiley & Sons; 2000. 80. Hilbe JM: Logistic Regression Models: Chapman and Hall/CRC; 2009. 81. Hosmer DW, Lemeshow S, May S: Applied Survival Analysis: Regression Modeling of Time to Event Data, 2nd edn: Wiley-Interscience; 2008. 82. Collett D: Modelling Survival Data in Medical Research, 2nd edn: Chapman and Hall/CRC; 2003. 83. Kleinbaum DG, Klein M: Survival Analysis: A Self-Learning Text, 2nd edn: Springer; 2005. 84. Cox DR: Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B (Methodological) 1972, 34(2):187-220. 85. Muller N, Schwarz MJ: The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007, 12(11):988-1000. 86. Pietrobon D: Migraine: new molecular mechanisms. Neuroscientist 2005, 11(4):373-386. 87. Levy D, Burstein R, Strassman AM: Mast cell involvement in the pathophysiology of migraine headache: A hypothesis. Headache 2006, 46 Suppl 1:S13-18. 88. Kemper RH, Meijler WJ, Korf J, Ter Horst GJ: Migraine and function of the immune system: a meta-analysis of clinical literature published between 1966 and 1999. Cephalalgia 2001, 21(5):549-557. 89. Grzelewska-Rzymowska I, Bogucki A, Szmidt M, Kowalski ML, Prusinski A, Rozniecki J: Migraine in aspirin-sensitive asthmatics. Allergol Immunopathol (Madr) 1985, 13(1):13-16. 90. Schurks M, Zee RY, Buring JE, Kurth T: Interrelationships among the MTHFR 677C>T polymorphism, migraine, and cardiovascular disease. Neurology 2008, 71(7):505-513. 91. Noll G, Wenzel RR, Luscher TF: Endothelin and endothelin antagonists: potential role in cardiovascular and renal disease. Molecular and cellular biochemistry 1996, 157(1-2):259-267. 92. Charlson ME, Pompei P, Ales KL, MacKenzie CR: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases 1987, 40(5):373-383. 93. Elixhauser A, Steiner C, Harris DR, Coffey RM: Comorbidity measures for use with administrative data. Medical care 1998, 36(1):8-27. 94. Wang SJ, Fuh JL, Lu SR, Juang KD: Quality of life differs among headache diagnoses: analysis of SF-36 survey in 901 headache patients. Pain 2001, 89(2-3):285-292. 95. Tietjen GE, Bushnell CD, Herial NA, Utley C, White L, Hafeez F: Endometriosis is associated with prevalence of comorbid conditions in migraine. Headache 2007, 47(7):1069-1078. 96. Tietjen GE, Conway A, Utley C, Gunning WT, Herial NA: Migraine is associated with menorrhagia and endometriosis. Headache 2006, 46(3):422-428. 97. Karp BI, Sinaii N, Nieman LK, Silberstein SD, Stratton P: Migraine in women with chronic pelvic pain with and without endometriosis. Fertil Steril 2011, 95(3):895-899. 98. Yang MH, Wang PH, Wang SJ, Sun WZ, Oyang YJ, Fuh JL: Women with endometriosis are more likely to suffer from migraines: a population-based study. PloS one 2012, 7(3):e33941. 99. Covino E, Spadaccio C: Calcitonin gene related peptide: a new ally in cardiac ischemic disease. Minerva Anestesiol 2011, 77(8):763-765. 100. Franco-Cereceda A, Gennari C, Nami R, Agnusdei D, Pernow J, Lundberg JM, Fischer JA: Cardiovascular effects of calcitonin gene-related peptides I and II in man. Circ Res 1987, 60(3):393-397. 101. MacGregor A: Estrogen replacement and migraine aura. Headache 1999, 39(9):674-678. 102. Harris M, Kaneshiro B: An evidence-based approach to hormonal contraception and headaches. Contraception 2009, 80(5):417-421. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66420 | - |
| dc.description.abstract | 近年來,由於資料的收集與統整資訊化的成果,造成大型臨床醫學資料庫,與生物醫學資訊學的出現;而除傳統統計分析方法外,更引進機器學習概念,著重自動化資料處理和智慧決策。在本論文,我們提出一應用密度估計演算法的資料分析過程,來調查偏頭痛與眾多疾病之間的共病關聯。這項研究的主要目的旨在發展一個新的分析過程,可以從大型醫療資料庫,發掘有見地的知識。整個分析過程分為兩個階段:在第一階段,一種名為RVKDE 的核心密度估計演算法將用以確定「興趣樣本」。然後,在第二階段,另一種植基於廣義高斯元件的密度估計演算法,G2DE,用以提供樣本分群的摘要說明。偏頭痛是一種流行,但經常被低估的神經功能障礙,因此我們希冀發掘其與多種身心疾病的共病關聯。臺灣的全民健康保險研究資料庫(NHIRD)被用作這項研究的資料來源,其主要優勢為一個植基於全國人口範圍的大型醫療保險申報資料庫。根據本論文提出的兩階段分析過程,分析偏頭痛共病關聯而取得的結果,可以有效識別特徵鮮明的「興趣樣本」。此外,所識別樣本進一步的分群,其特性符合最近生物醫學研究中發現的知識。因此,本論文所提出的分析過程,可以針對發病機制提供有價值的線索,從而促進適當治療策略的發展。 | zh_TW |
| dc.description.abstract | Current trends in biomedical informatics have been toward developing automatic data processing and intelligent decision-making systems. This thesis proposes a method of analyzing data based on density estimation in order to investigate co-morbidities associated with migraine and suspected diseases. The primary objective was to develop a means of analysis capable of providing insight into knowledge obtained from large medical databases. In the first stage of analysis, a kernel density estimation algorithm named RVKDE was used to identify subjects of
interest. In the following stage, a density estimation algorithm based on generalized Gaussian components and named G2DE was used to provide a summarized description of the distribution. Migraine is a prevalent but largely overlooked neurological disorder; therefore, this study sought to mine associated co-morbidities, such as certain psychiatric and somatic illnesses. Data was obtained from the large population-based medical claims records in the National Health Insurance Research Database (NHIRD) of Taiwan. Our results demonstrate the effectiveness of using the proposed analysis procedure to identify clusters of subjects sharing distinctive characteristics. Furthermore, these characteristics are related to a number of recent discoveries in biomedical research. The proposed analysis procedure is capable of providing valuable clues into the pathogenesis of diseases as well as facilitating the development of effective treatment strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:34:55Z (GMT). No. of bitstreams: 1 ntu-101-D95922001-1.pdf: 4875719 bytes, checksum: e8b5894312557c6a296d6d4b31af947d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Table of Contents ......................................................................................................... I
List of Tables ................................................................................................................ A List of Figures ............................................................................................................... a 中文摘要........................................................................................................................1 Abstract ......................................................................................................................... 2 1. Background and Motivation ............................................................................... 4 1.1 Intelligence in Electronic Health Record Systems ................................ 4 1.1.1 Electronic Health Record Systems ............................................. 4 1.1.2 Analysis of Electronic Health Record Systems with Machine Learning Algorithms .................................................................................... 6 1.2 Thesis Organization ................................................................................. 9 2. The Medical Database ....................................................................................... 10 2.1 National Health Insurance Research Database ................................... 10 2.2 Co-morbidities of Migraine ................................................................... 13 2.2.1 Mental Disorders ........................................................................ 13 2.2.2 Otolaryngology ........................................................................... 15 2.2.3 Musculoskeletal Illnesses ........................................................... 16 2.2.4 Metabolism & Endocrinology ................................................... 17 2.2.5 Cardiovascular & Neurological Diseases ................................. 18 2.2.6 Gastroenterology & Hepatology ............................................... 19 3. Density Estimation Algorithms ......................................................................... 21 3.1 Relaxed Variable Kernel Density Estimation Algorithm ................... 21 3.2 Generalized Gaussian Component based Density Estimation Algorithm ............................................................................................................ 23 4. Research Methods .............................................................................................. 26 4.1 Case Patient Definition and Control Selection .................................... 26 4.2 Medication Exposure Utilized as Features .......................................... 27 4.3 Diseases Utilized as Outcomes .............................................................. 28 4.4 Flowchart of The Research ................................................................... 30 4.5 Regression Analysis in Statistics ........................................................... 33 4.5.1 Logistic Regression .................................................................... 34 4.5.2 Cox Proportional Hazard Regression ...................................... 35 4.5.3 Special Characteristics of Density Estimation Algorithms .... 36 5. Results and Discussions ..................................................................................... 38 5.1 Results ..................................................................................................... 38 5.2 Discussion................................................................................................ 42 5.2.1 Co-morbidities of Migraine ....................................................... 42 5.2.2 Analysis Results of Density Estimation .................................... 47 5.2.3 Limitations .................................................................................. 50 6. Conclusions and Future Works ........................................................................ 52 6.1 Conclusions ............................................................................................. 52 6.2 Future Works .......................................................................................... 52 References ................................................................................................................... 56 | |
| dc.language.iso | en | |
| dc.subject | 全民健康保險研究資料庫 | zh_TW |
| dc.subject | RVKDE | zh_TW |
| dc.subject | 密度估計演算法 | zh_TW |
| dc.subject | 共病關聯 | zh_TW |
| dc.subject | 偏頭痛 | zh_TW |
| dc.subject | G2DE | zh_TW |
| dc.subject | NHIRD | en |
| dc.subject | RVKDE | en |
| dc.subject | G2DE | en |
| dc.subject | migraine | en |
| dc.subject | co-morbidity | en |
| dc.subject | Density estimation algorithm | en |
| dc.title | 應用密度估計演算法分析大型醫學資料庫 | zh_TW |
| dc.title | Application of Density Estimation Algorithms in Analysis of Large Medical Databases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 趙坤茂,高成炎,賴飛羆,陳倩瑜,黃乾綱 | |
| dc.subject.keyword | 密度估計演算法,RVKDE,G2DE,偏頭痛,共病關聯,全民健康保險研究資料庫, | zh_TW |
| dc.subject.keyword | Density estimation algorithm,RVKDE,G2DE,migraine,co-morbidity,NHIRD, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-02-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
