Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64890
Title: 二維置移排序
Two-Dimensional Homing Sort
Authors: Bo-Yi Wang
王柏易
Advisor: 呂學一(Hsueh-I Liu)
Keyword: 排序,排列,離散數學,演算法,
Sorting,Permutation,Discrete Mathematics,Algorithm,
Publication Year : 2012
Degree: 碩士
Abstract: 置移排序是一個自然的排序方法,尤其是當我們用人工的方式排序
時特別有用。一維的置移排序演算法已經被證明可以在2^(n-1)-1個步驟以內停止[1]。而我們的主要結果是重新定義二維的置移排序演算法,並且證明在2 n的排列上使用二維置移排序必定會在有限的步驟內停止。
Homing sort, i.e., sorting by placement and shift, is a natural way to do hand-sorting. Elizalde and Winkler showed that (1) anyn-element permutation can be sorted byn 1or less one-dimensional homing operations; (2) non-element permutation admits a sequence of 2^n-1 or more homing operations; and (3) the number ofn-element per-mutations that admit a sequence of 2^(n-1)-1homing operations is
super-exponential in n. In the present paper, we study sorting via two-dimensional homing operations and obtain the following obser-vations: (1) Anym npermutation can be sorted by at most mn-1 two-dimensional homing operations. (2) If both vertical-first and horizontal-first homing operations are allowed, for any integers m >= 2 and n >= 2, there is an m npermutation that admits an infinite se-quence of two-dimensional homing operations. (3) If only vertical-first homing operations are allowed, for any integers m >= 3 and n >= 2, there is anm npermutation that admits an infinite sequence of two-dimensional homing operations. (4) The number of 2 x n permutations
that admit sequences of (2n) vertical-first two-dimensional homing operations is super-exponential inn. (5) No 2 npermutation admits a sequence of (2n)!or more vertical-first two-dimensional homing op-erations.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64890
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
1.45 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved