請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64890
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂學一(Hsueh-I Liu) | |
dc.contributor.author | Bo-Yi Wang | en |
dc.contributor.author | 王柏易 | zh_TW |
dc.date.accessioned | 2021-06-16T23:05:55Z | - |
dc.date.available | 2012-08-15 | |
dc.date.copyright | 2012-08-15 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-06 | |
dc.identifier.citation | [1] S. Elizalde and P. Winkler. Sorting by placement and shift. InProceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 68–75, 2009.
[2] M. Gardner.Time Travel and Other Mathematical Bewilderments. W.H. Freeman & Company, 1987. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/64890 | - |
dc.description.abstract | 置移排序是一個自然的排序方法,尤其是當我們用人工的方式排序
時特別有用。一維的置移排序演算法已經被證明可以在2^(n-1)-1個步驟以內停止[1]。而我們的主要結果是重新定義二維的置移排序演算法,並且證明在2 n的排列上使用二維置移排序必定會在有限的步驟內停止。 | zh_TW |
dc.description.abstract | Homing sort, i.e., sorting by placement and shift, is a natural way to do hand-sorting. Elizalde and Winkler showed that (1) anyn-element permutation can be sorted byn 1or less one-dimensional homing operations; (2) non-element permutation admits a sequence of 2^n-1 or more homing operations; and (3) the number ofn-element per-mutations that admit a sequence of 2^(n-1)-1homing operations is
super-exponential in n. In the present paper, we study sorting via two-dimensional homing operations and obtain the following obser-vations: (1) Anym npermutation can be sorted by at most mn-1 two-dimensional homing operations. (2) If both vertical-first and horizontal-first homing operations are allowed, for any integers m >= 2 and n >= 2, there is an m npermutation that admits an infinite se-quence of two-dimensional homing operations. (3) If only vertical-first homing operations are allowed, for any integers m >= 3 and n >= 2, there is anm npermutation that admits an infinite sequence of two-dimensional homing operations. (4) The number of 2 x n permutations that admit sequences of (2n) vertical-first two-dimensional homing operations is super-exponential inn. (5) No 2 npermutation admits a sequence of (2n)!or more vertical-first two-dimensional homing op-erations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:05:55Z (GMT). No. of bitstreams: 1 ntu-101-R00922001-1.pdf: 1486427 bytes, checksum: 11b5ba1547468a5f3081ba8480d554a8 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致 謝 i
中文摘要 iii Abstract v 1 Introduction 1 2 preliminaries 5 3 Our proof 7 4 Concluding remarks 11 Bibliography 13 | |
dc.language.iso | zh-TW | |
dc.title | 二維置移排序 | zh_TW |
dc.title | Two-Dimensional Homing Sort | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王大為(Da-Wei Wang),劉邦鋒(Pang-Feng Liu),陳和麟(Ho-Lin Chen) | |
dc.subject.keyword | 排序,排列,離散數學,演算法, | zh_TW |
dc.subject.keyword | Sorting,Permutation,Discrete Mathematics,Algorithm, | en |
dc.relation.page | 13 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-07 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。