Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62085
Title: 可快速探勘封閉頻繁物品集且毋需產生中繼物之演算法
A Fast Algorithm for Mining Closed Frequent Itemsets without Candidate Generation
Authors: Tzu-Yun Chen
陳子筠
Advisor: 陳健輝(Gen-Huey Chen)
Keyword: 資料探勘,關聯規則,封閉頻繁物品集,
data mining,association rules,closed frequent itemsets,
Publication Year : 2013
Degree: 碩士
Abstract: 探勘封閉頻繁物品集在資料探勘的領域中已經被廣泛的研究。自從關聯規則被提出後,探勘頻繁物品集就成為了重要的研究課題,而探勘頻繁物品集的問題在於使用記憶體的空間太多,為了減少記憶體的使用量,探勘封閉頻繁物品集的研究也就問世了。
封閉頻繁物品集不僅能夠保留完整的頻繁物品集的資訊,還能減少記憶體的使用量,此外封閉頻繁物品集也能提供完整且無累贅的關聯規則結果。在本篇論文中提出了CLOFI,一個快速探勘封閉頻繁物品集的演算法。CLOFI運用不同條件下的子資料庫保留必要的資訊來產生封閉頻繁物品集,並且使用了two-way extension check技術來檢查找到的物品集是否為封閉頻繁物品集,因為以上兩種技術,CLOFI得以產生封閉頻繁物品集而不用產生中繼物。
在評估實驗的部份會拿CLOFI和之前論文的演算法CLOSET+來做比較,我們用了幾個資料庫來做實驗,其中包含真實和合成的資料庫。最後將實驗結果的時間和記憶體使用量做分析,並且發現其中代表的含義。
Closed frequent itemsets mining has been widely studied in data mining research. Since association rules mining proposed, frequent itemsets mining became an important research issue. The problem of frequent itemsets mining is that the memory consumption is too high. In order to reduce the memory consumption, closed frequent itemsets mining has proposed.
Closed frequent itemsets can not only keep the complete information like frequent itemsets but also reduce the consumption of memory. Furthermore, it provides complete and non-redundant results for mining association rules. In this thesis we present CLOFI, a fast algorithm for mining closed frequent itemsets. It uses conditional databases to keep the necessary information for enumerating closed frequent itemsets. It also uses two-way extension check technology to check the finding itemset is closed frequent itemset or not. According to above two techniques, CLOFI can mine closed frequent itemsets without candidate generation.
The performance which CLOFI compares with previous work CLOSET+ shows in experiment evaluation. We use several databases including both real and synthetic databases in the experiments. Finally we have shown the significance of the experiment results, including time and memory consumptions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62085
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
4.1 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved