Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳健輝(Gen-Huey Chen)
dc.contributor.authorTzu-Yun Chenen
dc.contributor.author陳子筠zh_TW
dc.date.accessioned2021-06-16T13:26:56Z-
dc.date.available2016-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-23
dc.identifier.citation[1] R. Agrawal, T. Imielinski, and A. Swami, 'Mining association rules between sets of items in large databases,' Proc. the ACM SIGMOD International Conference on Management of Data, Washington, D.C., USA, 1993.
[2] R. Agrawal and R. Srikant, 'Fast algorithms for mining association rules,' Proc. the 20th International Conference Very Large Data Bases, VLDB, 1994, pp. 487- 499.
[3] J. Han, J. Pei, Y. Yin, and R. Mao, 'Mining frequent patterns without candidate generation: a frequent-pattern tree approach,' Data Mining and Knowledge Discovery, vol. 8, pp. 53-87, 2004.
[4] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, 'Discovering frequent closed itemsets for association rules,' Database Theory - ICDT’99, Springer, pp. 398- 416, 1999.
[5] M. J. Zaki and C.-J. Hsiao, 'CHARM: an efficient algorithm for closed itemset mining,' Proc. the 2nd SIAM International Conference on Data Mining, pp. 457-473, 2002.
[6] C. Borgelt, X. Yang, R. Nogales-Cadenas, P. Carmona-Saez, and A. Pascual- Montano, 'Finding closed frequent item sets by intersecting transactions,' Proc. the 14th International Conference on Extending Database Technology, Uppsala, Sweden, 2011.
[7] R. Agrawal and R. Srikant, 'Mining sequential patterns,' Proc. the 11th International Conference on Data Engineering, , pp. 3-14, 1995.
[8] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu, 'FreeSpan: frequent pattern-projected sequential pattern mining,' Proc. the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Massachusetts, USA, 2000.
[9] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, 'Mining sequential patterns by pattern-growth: the prefixspan approach,' IEEE Transactions on Knowledge and Data Engineering , vol. 16, pp. 1424-1440, 2004.
[10] J. Wang, J. Han, and C. Li, 'Frequent closed sequence mining without candidate maintenance,' IEEE Transactions on Knowledge and Data Engineering, vol. 19, pp. 1042-1056, 2007.
[11] Y. Liu, W.-K. Liao, and A. Choudhary, 'A fast high utility itemsets mining algorithm,' Proc. the 1st International Workshop on Utility-based Data Mining, Chicago, Illinois, 2005.
[12] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu, 'UP-Growth: an efficient algorithm for high utility itemset mining,' Proc. the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 2010.
[13] M. Liu and J. Qu, 'Mining high utility itemsets without candidate generation,' Proc. the 21st ACM International Conference on Information and Knowledge Management, Maui, Hawaii, USA, 2012.
[14] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, 'Efficient tree structures for high utility pattern mining in incremental databases,' IEEE Transactions on Knowledge and Data Engineering, vol. 21, pp. 1708-1721, 2009.
[15] V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, 'Efficient algorithms for mining high utility itemsets from transactional databases,' IEEE Transactions on Knowledge and Data Engineering, pp. 1-14, 2012.
[16] J. Liu, K. Wang, and B. Fung, 'Direct discovery of high utility itemsets without candidate generation,' Proc. the 12th IEEE International Conference on Data Mining (ICDM), pp. 984-989, 2012.
[17] C. W. Wu, P. Fournier-Viger, P. S. Yu, and V. S. Tseng, 'Efficient mining of a concise and lossless representation of high utility itemsets,' Proc. the 11th IEEE International Conference on Data Mining (ICDM), pp. 824-833, 2011.
[18] C.-H. Lee, C.-R. Lin, and M.-S. Chen, 'Sliding-window filtering: an efficient algorithm for incremental mining,' Proc. the 10th International Conference on Information and Knowledge Management, Atlanta, Georgia, USA, 2001.
[19] C.-Y. Chang, M.-S. Chen, and C.-H. Lee, 'Mining general temporal association rules for items with different exhibition periods,' Proc. the IEEE International Conference on Data Mining(ICDM), pp. 59-66, 2002.
[20] C.-H. Lee, M.-S. Chen, and C.-R. Lin, 'Progressive partition miner: an efficient algorithm for mining general temporal association rules,' IEEE Transactions on Knowledge and Data Engineering, vol. 15, pp. 1004-1017, 2003.
[21] J.-W. Huang, B.-R. Dai, and M.-S. Chen, 'Twain: two-end association miner with precise frequent exhibition periods,' ACM Transactions Knowledge Discovery Data, vol. 1, 2007.
[22] X. Liu, J. Guan, and P. Hu, 'Mining frequent closed itemsets from a landmark window over online data streams,' Computers & Mathematics with Applications, vol. 57, pp. 927-936, 2009.
[23] H.-F. Li and S.-Y. Lee, 'Mining frequent itemsets over data streams using efficient window sliding techniques,' Expert Systems with Applications, vol. 36, pp. 1466-1477, 2009.
[24] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, 'Sliding window-based frequent pattern mining over data streams,' Information sciences, vol. 179, pp. 3843-3865, 2009.
[25] T. F. Gharib, H. Nassar, M. Taha, and A. Abraham, 'An efficient algorithm for incremental mining of temporal association rules,' Data & Knowledge Engineering, vol. 69, pp. 800-815, 2010.
[26] G. S. Manku and R. Motwani, 'Approximate frequency counts over data streams,' Proc. the 28th International Conference on Very Large Data Bases, Hong Kong, China, 2002.
[27] H.-F. Li, C.-C. Ho, and S.-Y. Lee, 'Incremental updates of closed frequent itemsets over continuous data streams,' Expert Systems with Applications, vol. 36, pp. 2451-2458, 2009.
[28] B.-E. Shie, V. S. Tseng, and P. S. Yu, 'Online mining of temporal maximal utility itemsets from data streams,' Proc. the 2010 ACM Symposium on Applied Computing, Sierre, Switzerland, 2010.
[29] C. W. Wu, B.-E. Shie, V. S. Tseng, and P. S. Yu, 'Mining top-k high utility itemsets,' Proc. the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012.
[30] H. S. L. Shen, P. Pritchard and R. Topor, 'Finding the N largest itemsets,' Proc. International Conference on Data Mining, pp. 211-222, 1998.
[31] A. W.-C. Fu, R. W.-W. Kwong, and J. Tang, 'Mining N-most interesting itemsets,' Foundations of Intelligent Systems, Springer, pp. 59-67, 2010.
[32] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, 'Mining top-k frequent closed patterns without minimum support,' Proc. the IEEE International Conference on Data Mining( ICDM), pp. 211-218, 2002.
[33] Y. Hirate, E. Iwahashi, and H. Yamana, 'TF2P-growth: an efficient algorithm for mining frequent patterns without any thresholds,' Proc. the IEEE ICDM 2004 Workshop on Alternative Techniques for Data Mining and Knowledge Discovery, 2004.
[34] Y.-L. Cheung and A. W.-C. Fu, 'Mining frequent itemsets without support threshold: with and without item constraints,' IEEE Transactions on Knowledge and Data Engineering, vol. 16, pp. 1052-1069, 2004.
[35] J. Wang, J. Han, Y. Lu, and P. Tzvetkov, 'TFP: an efficient algorithm for mining top-k frequent closed itemsets,' IEEE Transactions on Knowledge and Data Engineering, vol. 17, pp. 652-663, 2005.
[36] S.-C. Ngan, T. Lam, R. C.-W. Wong, and A. W.-C. Fu, 'Mining N-most interesting itemsets without support threshold by the COFI-tree,' International Journal of Business Intelligence and Data Mining, vol. 1, pp. 88-106, 2005.
[37] T. M. Quang, S. Oyanagi, and K. Yamazaki, 'ExMiner: an efficient algorithm for mining top-k frequent patterns,' Advanced Data Mining and Applications, Springer, pp. 436-447, 2006.
[38] K.-T. Chuang, J.-L. Huang, and M.-S. Chen, 'Mining top-k frequent patterns in the presence of the memory constraint,' The VLDB Journal, vol. 17, pp. 1321- 1344, 2008.
[39] Y. Xie and P. S. Yu, 'Max-Clique: a top-down graph-based approach to frequent pattern mining,' Proc. the 10th IEEE International Conference on Data Mining (ICDM), pp. 1139-1144, 2010.
[40] J. Wang, J. Han, and J. Pei, 'CLOSET+: searching for the best strategies for mining frequent closed itemsets,' Proc. the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, D.C., 2003.
[41] D. Burdick, M. Calimlim, and J. Gehrke, 'MAFIA: a maximal frequent itemset algorithm for transactional databases,' Proc. the 17th International Conference on Data Engineering, pp. 443-452, 2001.
[42] J. Pei, J. Han, and R. Mao, 'CLOSET: an efficient algorithm for mining frequent closed itemsets,' ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 21-30, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62085-
dc.description.abstract探勘封閉頻繁物品集在資料探勘的領域中已經被廣泛的研究。自從關聯規則被提出後,探勘頻繁物品集就成為了重要的研究課題,而探勘頻繁物品集的問題在於使用記憶體的空間太多,為了減少記憶體的使用量,探勘封閉頻繁物品集的研究也就問世了。
封閉頻繁物品集不僅能夠保留完整的頻繁物品集的資訊,還能減少記憶體的使用量,此外封閉頻繁物品集也能提供完整且無累贅的關聯規則結果。在本篇論文中提出了CLOFI,一個快速探勘封閉頻繁物品集的演算法。CLOFI運用不同條件下的子資料庫保留必要的資訊來產生封閉頻繁物品集,並且使用了two-way extension check技術來檢查找到的物品集是否為封閉頻繁物品集,因為以上兩種技術,CLOFI得以產生封閉頻繁物品集而不用產生中繼物。
在評估實驗的部份會拿CLOFI和之前論文的演算法CLOSET+來做比較,我們用了幾個資料庫來做實驗,其中包含真實和合成的資料庫。最後將實驗結果的時間和記憶體使用量做分析,並且發現其中代表的含義。
zh_TW
dc.description.abstractClosed frequent itemsets mining has been widely studied in data mining research. Since association rules mining proposed, frequent itemsets mining became an important research issue. The problem of frequent itemsets mining is that the memory consumption is too high. In order to reduce the memory consumption, closed frequent itemsets mining has proposed.
Closed frequent itemsets can not only keep the complete information like frequent itemsets but also reduce the consumption of memory. Furthermore, it provides complete and non-redundant results for mining association rules. In this thesis we present CLOFI, a fast algorithm for mining closed frequent itemsets. It uses conditional databases to keep the necessary information for enumerating closed frequent itemsets. It also uses two-way extension check technology to check the finding itemset is closed frequent itemset or not. According to above two techniques, CLOFI can mine closed frequent itemsets without candidate generation.
The performance which CLOFI compares with previous work CLOSET+ shows in experiment evaluation. We use several databases including both real and synthetic databases in the experiments. Finally we have shown the significance of the experiment results, including time and memory consumptions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:26:56Z (GMT). No. of bitstreams: 1
ntu-102-R00922156-1.pdf: 4193569 bytes, checksum: b9e50d3f5bd3d1efdc5ccdd5ae4e650e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Problem Statement 1
1.2 Research Issues 3
1.3 Mining Closed Frequent Itemsets 5
Chapter 2 Related Work 6
2.1 CHARM 6
2.2 CLOSET+ 7
2.3 BIDE 10
Chapter 3 A Mining Algorithm 14
3.1 Conditional Database 14
3.2 Extension Check 17
3.3 The Algorithm 20
3.4 Comparison 21
Chapter 4 Experiments 23
4.1 Experimental Environments 23
4.2 Experimental Results 26
4.3 Discussion 35
Chapter 5 Conclusion 36
References 37
Appendix A 43
Appendix B 50
dc.language.isozh-TW
dc.subject關聯規則zh_TW
dc.subject資料探勘zh_TW
dc.subject封閉頻繁物品集zh_TW
dc.subject資料探勘zh_TW
dc.subject關聯規則zh_TW
dc.subject封閉頻繁物品集zh_TW
dc.subjectassociation rulesen
dc.subjectdata miningen
dc.subjectclosed frequent itemsetsen
dc.subjectassociation rulesen
dc.subjectdata miningen
dc.subjectclosed frequent itemsetsen
dc.title可快速探勘封閉頻繁物品集且毋需產生中繼物之演算法zh_TW
dc.titleA Fast Algorithm for Mining Closed Frequent Itemsets without Candidate Generationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林宣華(Shian-Hua Lin),周信宏(Hsin-Hung Chou)
dc.subject.keyword資料探勘,關聯規則,封閉頻繁物品集,zh_TW
dc.subject.keyworddata mining,association rules,closed frequent itemsets,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2013-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved