Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6164
Title: 基於時序金字塔之第一人稱影像行為辨識
Activity Recognition in First-Person Camera View Based on
Temporal Pyramid
Authors: Hsuan-Ming Liu
劉軒銘
Advisor: 歐陽明(Ming Ouhyoung)
Keyword: 日常生活行為辨識,時序金字塔,條件隨機場,
activity of daily livings,temporal pyramid,conditional random fileds,
Publication Year : 2013
Degree: 碩士
Abstract: 在本篇論文中, 我們提出了針對於拍攝自第一人稱攝影機的影片, 進
行主角執行中的行為的辨識方法. 我們將此問題轉換為鏈狀條件隨機場
(Linear-chain Conditional Random Fields) 的序列標註問題. 在本方法中
使用高階視覺線索, 也就是畫面中物件偵測的結果, 來當做辨識特徵. 另
外也使用了時序金字塔(Temporal Pyramid) 來實現在時間軸上的多重解
析度, 並證明其可以改善現行的物件偵測結果. 另外也針對在日常生活
中常會發生的事件交錯情況, 提出在時序金字塔中找尋可能解的辦法.
最後我們利用目前最新研究提供的資料[1] 進行實驗, 得出可匹敵的結
果. 再利用自行拍攝的影片資料, 比較有無進行交錯事件搜尋的差別.
We present a simple but effective online recognition system for detecting
interleaved activities of daily life (ADLs) in first-person-view videos. The
two major difficulties in detecting ADLs are interleaving and variability in
duration. We use temporal pyramid in our system to attack these difficulties,
and this means we can use relatively simple models instead of time dependent
probability ones such as Hidden semi-Markov model or nested models.
The proposed solution includes the combination of conditional random fields
(CRF) and an online inference algorithm, which explicitly considers multiple
interleaved sequences by inferencing multi-stage activities on temporal
pyramid. Although our system only uses linear chain-structured CRF model,
which can be easily learned without a large amount of training data, it still
recognizes complicated activity sequences. The system is evaluated on a data
set provided by the work from state-of-the-art, and the result is comparable
to their method. We also provide some experiment result using a customized
dataset.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6164
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf4.22 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved