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中文 要

在本篇論文中,我們提出了針對於拍攝自第一人稱攝影機的影片,進
行主角執行中的行為的辨識方法. 我們將此問題轉換為鏈狀條件隨機場
(Linear-chain Conditional Random Fields)的序列標註問題. 在本方法中
使用高階視覺線索,也就是畫面中物件偵測的結果,來當做辨識特徵. 另
外也使用了時序金字塔 (Temporal Pyramid)來實現在時間軸上的多重解
析度,並證明其可以改善現行的物件偵測結果. 另外也針對在日常生活
中常會發生的事件交錯情況,提出在時序金字塔中找尋可能解的辦法.
最後我們利用目前最新研究提供的資料 [1]進行實驗,得出可匹敵的結
果. 再利用自行拍攝的影片資料,比較有無進行交錯事件搜尋的差別.

關鍵字: 日常生活行為辨識,時序金字塔,條件隨機場
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Abstract

We present a simple but effective online recognition system for detecting

interleaved activities of daily life (ADLs) in first-person-view videos. The

two major difficulties in detecting ADLs are interleaving and variability in

duration. We use temporal pyramid in our system to attack these difficulties,

and this means we can use relatively simple models instead of time depen-

dent probability ones such as Hidden semi-Markov model or nested models.

The proposed solution includes the combination of conditional random fields

(CRF) and an online inference algorithm, which explicitly considers multi-

ple interleaved sequences by inferencing multi-stage activities on temporal

pyramid. Although our system only uses linear chain-structured CRF model,

which can be easily learned without a large amount of training data, it still

recognizes complicated activity sequences. The system is evaluated on a data

set provided by the work from state-of-the-art, and the result is comparable

to their method. We also provide some experiment result using a customized

dataset.

Keywords: activity of daily livings, temporal pyramid, conditional random

fileds
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Chapter 1

Introduction

Activity recognition is one of the classic problems in computer vision. Defining and

recognizing activities for applications in surveillance or sport analysis has been exten-

sively studied in previous researches. However, there is usually less activity variation in

these videos. We concentrate on recognizing activities of daily life in videos shot in first

person view, which includes a wide variety of activities of daily life (ADLs). Nowadays,

wearable devices such as GoPro camera and Google Glass can be easily equipped and

generate high quality first-person-view videos. We believe that the combination of activ-

ity recognition and the video capture devices will promote appealing applications such as

follows:

Life Logging First-person-view video is naturally suited for personal life-logging. As

stated in [2]. People can wear convenient devices to record their daily life, which improves

their memories better than diary or voice recording. By utilizing activity recognition sys-

tem to parse the recorded video, users can reassemble memorable events and quickly filter

out massive amount of meaningless events.

Senior Citizen Caring There are benchmarks used to evaluate ADLs for clinical ap-

plication [3]. If we could do these evaluations by mounting a camera for individuals and

detecting these ADLs, at-home monitoring may became a reality and can save huge re-

sources for senior citizen caring.
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Context-Aware Service "The next chapter" in previous research in this area is how to

acquire more powerful context-aware service by integrating first-person activity within

other context such as location-based service. Imagine a pinpoint task about a scenario that

a person is leaving home for work: A possible activity sequence for this person will be

"taking briefcase", "wearing shoes", "opening door" and "without taking umbrella". With

weather prediction from a location-based service, the system can raise a notification to the

user to bring umbrella if the probability of precipitation is high.

It is challenging to analyze daily activities in a first-person-view video due to variability

in duration, interleaved activities and various levels of semanticmeanings. Previousworks

in activity recognition approaches can be divided into single-layered methods and hierar-

chical methods [4]. Single layer methods are usually constrained to low activity level. On

the other hand, hierarchical methods give more flexible meaning by concatenating events

in lower hierarchies of activity models. A temporal pyramid feature representationmethod

proposed in [1] aggregates bag of features in temporal hierarchy. Using temporal pyramid

encodes the event-duration variation and avoids complex probabilistic modeling such as

hierarchical hidden semi-Markov Model (HHSMM).

In this paper, we purposed an online system, which aims to detect the activities in a sim-

ple but effective way by using a temporal pyramid to migrate observations in time domain

to provide improved detection results. Unlike previous method only taking the pyramid as

a multi-resolution feature, we further propose a Viterbi-like sequential inference strategy

to find the possible interleaved activities. And since the system is working in an online

manner, once embedded with real-time object detection it becomes a real-time context-

aware service system. This is exactly "the next chapter" application in computer vision

and can be worthwhile to further researches in the future.
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1.1 Overview

The organization of this paper is as follows. We use active/passive objects shown

in the video frames as high level visual clue as described in section 3.1. In section 3.2,

we explicitly define the problem we are going to solve and model it into a linear-chain

conditional random field sequence-labeling problem. The temporal pyramid is explained

in sections 3.3, containing the reason why using temporal pyramid and the definition of it.

In section 3.4, we use a laundry example to illustrate the inference process and followed by

system flow and the algorithm. In Chapter 4, the results of our experiment are presented

including using ideal object annotation and deformable part-based model object detection.

And the comparison between sliding window with or without temporal pyramid is also

provided in this chapter. Finally we conclude the result in Chapter 6.
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Chapter 2

Related Work

There are different activity recognitionmethods that aim at different types of input data

such as video footage and sensor input. A recent research direction is to recognize ADLs in

ego-vision[cite wearable camera] [1]. They proposed a method of using temporal pyramid

to transfer the local features into temporal extension and classified the activities by support

vector machine. There are also attempts to recognize activities by using non-visual cues.

Some researchers used data from a simulating robot tag space to compare the performance

between different statistical models [5]. An activity recognition system is embedded on

smart phones based on 3D accelerometers data analysis [6], but it can only recognize a few

types of primitive behavior such as walking. Another sensor-based approach is proposed

to handle sequential, interleaved and concurrent activities sequence [7]. However, the

systems works in a sophisticated smart home environment with RFID equipments.

The mainstream in previous methods is using state-based model for activity represen-

tation. Hidden Markov model (HMM) and its variants are widely used in those methods.

Along with the increasing trend of newly-wed taking records, an automatic wedding video

segmentation is proposed [8]. The system recognizes multiple wedding events by using

HMM and segments a wedding video. A hierarchical hidden Markov model (HHMM) is

used to describe events containing multiple semantic levels [6]. Switch Hidden Markov

model (SHMM) is a two layer case of HMM [9]. It encodes both duration variation and

semantic level combination for ADL recognition [9]. However, hierarchical statistical
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models are complex so that the computational cost is usually high. Conditional random

fields (CRFs) is a discriminative probabilistic model for sequence labeling and segmenta-

tion [10]. It relaxes the independence assumption between observations. Besides, CRFs

provides single joint probability distribution of entire sequences, thus it is immune to label

bias problem of maximum entropy Markov models (MEMMs), which only models joint

probability in local states. CRF is shown to be more robust than HMM for activity recog-

nition when the observation distribution violates the independent assumption of HMM [5].

A two-level probabilistic framework for concurrent and interleaving goal recognition [11]

utilizes skip-chain CRF to achieve their goal. However, it is somewhat complex utilizing

SCCRF and the inputs of their system are from non-visual sensors.

Various types of feature descriptors are used as observation for probabilistic models.

Methods using low level features are often limited in the type of activity they can rec-

ognize [12]. Semantic features enhances activity recognition especially for composite

events, such as wedding ceremony [8]. Their proposed Wedding feature descriptors of [8]

are speech discriminator, flash light detector and bride indicator. The system performance

reaches over 70% precision and recall rate among most of the event types. However,

these feature descriptors are discriminative since they are supported by strong low level

features in newly-wed video. ADL videos usually lack prominent characteristics and the

event variation is high. So far, object detectors seem to be most stable feature descriptor

in ADL recognition [1]. It is also useful to describe objects in an interactive-event space

by visual phrases [13], e.g., "Man sitting in sofa" or "Person riding bike". Proposed tem-

poral pyramid of [1] is a powerful feature representation. It provides a temporal hierarchy

which aggregates object descriptors of short interval to those of large interval, which re-

duces effect of inaccurate object detection in short interval. The recognition is greatly

enhanced by concatenating feature segments of all hierarchies into a single feature vector,

and then classifies them by using support vector machine (SVM) classifier. However, the

performance of object detection in such realistc dataset is unreliable and the framework

cannot deal with interleaved activities that are not shown in the training data.
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Chapter 3

Method

3.1 Visual Phrase Object Feature

Many previous researh has shown that using RFID or some other mechanism to ac-

quire the interacting objects is a strong evidence indicating the ongoing activity of the

subject [7] [14]. However, it needs more effort for the user to be gear up with sensors and

the target objects also have to be embedded with RFIDs.

Our target is to use pure computer vision to solve this proplem. We use object-centric

features to represent the high level information in the egocentirc frames.The appearence

of objects in interaction may be much different from its original one and reasoning objects

relations includes much complexity. The significant gains in considering the objects as

visual phrases is shown in [13]. This approach is appropriate in our case because most

of the ADLs are interactions between human hands and the objects. We denote a specific

object in seperate types, active and passive. In other words, there are two different feature

for a single object class. For example, active_cup and passive_cup are considered two

different object/feature in our system.

Intuitively, objects may tend to lie in similar positions and have similar sizes presented in

the field of view for the same activity. However, after [1] augmenting some spatial rea-

soning into their object features, there is no noticeble improvemet. Therefore we do not

take the spatial or size into account. On the other hand, we consider objects in the manner

of bag-of-words.
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3.2 Activity Model

Problem Definition A general description of our problem is defined as follows: Let

I = {i|i = 1, 2, 3, ...n} denote indexes of an input sequence with n frames, and O =

{o|o = 1, ...m} denote indexes of m objects in the scene. F is a set of feature vectors

{fi|i ∈ I} associated with the video frame, where fi contains m labels such that f o
i = 1 if

object o exists in frame i, otherwise f o
i = 0. Let L denote a set of possible activities in the

video frame, then the objective is to find activity labels A = {ai|i ∈ I, ai ∈ L} such that

A∗ = arg max
A

P {A|F} , (3.1)

where P {A|F} denotes the probability of activity A given F . Since F is already known,

the conditional probability P {A|F} is proportional to joint probability P {A, F}. There-

fore, eq (3.1) can be rewritten as

A∗ = arg max
A

P (A, F ). (3.2)

A linear chain-structured CRF can model the joint probability as

P (A, F ) ∝
n∑

i=1

Q∑
j=1

hjqj(F, ai−1, ai) (3.3)

Where Q is the number of feature functions andh is the weighting factor learned by CRF

training.

According to eq (3.3), we can derive

a∗
i = arg max

ai

Q∑
j=1

hjqj(F, ai−1, ai) (3.4)

We use a sliding window to wrap up the video frames and aggregate them by temporal

pyramid (will be describe in the following section). We call these aggregated frames a
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segment S = {sk|k ∈ number of segments}. Our system outputs activity label for each

segment. The final problem definition is

s∗
k = arg max

sk

Q∑
j=1

hjqj(F, ak−1, ak) (3.5)

Laundry Example Before going further, we use a simple example to explain the

problem of using linear chain-structured CRF. The scenario is about a person doing laun-

dry. A normal activity sequence is: ``taking clothes'', ``using washing machine'', and then

``taking clothes'' again. If we further consider multiple stages to describe an activity, the

sequence will be: ``laundry on stage 1'', ``laundry on stage 2'', and then ``laundry on stage

3''. Since it is reasonable to take clothes just before and right after using washing ma-

chines, the transition possibility between states ``laundry on stage 1'' and ``laundry on

stage 2'' should be strong after CRF model learning. However, it is also possible in a

daily life such that the person does something not much related about laundry between

these events. For example, he may receive a phone call before going to the laundry room.

Therefore, the original event sequence becomes an interleaved activity sequence: ``laun-

dry on stage 1'', ``using cell phone'', ``laundry on stage 2'', and then ``laundry on stage 3''.

Since the transition possibility between ``using cell phone'' and ``laundry on stage 2'' is

weak, CRF may misjudge ``laundry on stage 2'' as other activities after it observes ``using

cell phone''. A possible solution is to consider earlier states rather than just consider the

last state. However, this method will make the model learning become difficult since the

CRF structure becomes more complex. And it is hard to determine how many neighbor-

ing events should be considered. Our idea is to use temporal pyramid encoding multiple

temporal scales of an observation sequence and consider multiple interleaved sequences

according to possible stages of an activity.

3.3 Temporal Pyramid Feature Aggregation

We adopt temporal pyramid [1] to model features of multiple temporal hierarchies.

The reason we adopt this method are as follows:

8



Multi-resolution in Time Domain The ADLs are by nature having large variability

in duration. Some previous methods try to solve this problem by training stage models

depending on time. This makes state models complex, and still not a robust way for facing

this problem. By observing the input video in different level of the pyramid is equivalent

to seeing the data in multi-resolution of time domain, and this relaxes the problem of

variation in duration of ADLs.

Alternative of Hierarchical Methods A main stream of activity detection is to

model this problem into hierarchical layers. For example, atomic actions are detected in

bottom layer and classifiers in higher layer of the hierarchy take over the atomic actions.

High level result is then produced with higher symantic meanings. Building pyramid in

feature space is also providing this hierarchical characteristic. We are able to use a single

activity classifier, with hierachical feature pyramid, to achive the same goal.

Correction of Object Detection In the scenario of first-person-view videos, object

detection becomes very difficult because of clutter, occlusion, different viewing angles

and variation of illumination. Using temporal pyramid to merge segments by averaging

the object detection score is in some sense correcting the detection result.

Temporal Pyramid Let T represent a temporal pyramid with p levels, and Tl,k is

kth time segment on level l of the pyramid. We use sl,k =
{
so

l,k|o ∈ O
}
to denote the

corresponding feature vector for time segment Tl,k, where so
l,k is the score of an object o

in Tl,k. Now we define feature vectors on first level by

s0,k =
∑

i∈T0,k

fi. (3.6)

The features on higher levels can be computed by aggregating features on last level:

sl,k = 1
2

(sl−1,2k−1 + sl−1,2k) (3.7)

9



Figure 3.1: (a) Observation of the first two segments (T0,0, s0,0) and (T0,1, s0,1). (b) Stage
tables for a0,0 and a0,1.

We translate sl,k into a boolean vector xl,k as input of CRF model, where xo
l,k = 1 if

so
l,k > |Tl,k|/α, otherwise xo

l,k = 0, where α is a constant.

3.4 Online Inference Algorithm

Let us use the example ``laundry'' to illustrate the online inference algorithm. Suppose

that the event sequence is: ``laundry on stage 1'', ``using cell phone'', ``laundry on stage 2''

and then ``laundry on stage 3''. Figure 3.1(a) shows the observation of first two segments

s0,0 and (T0,1, s0,1). In the beginning ((T0,0, s0,0)) the most appeared object is ``clothes'',

while in the second segment ((T0,1, s0,1)) the score of ``detergent'' increases (the person is

taking detergent for washing clothes). After merging s0,0 and s0,1, s1,0 shows that the most

appeared object is ``clothes'' from beginning to current frame, as shown in Figure 3.2(a).

Let al,k denote the activity of segment Tl,k. Then the most possible activity a∗
0,0 in segment

(T0,0, s0,0) is obviously:

a∗
0,0 = arg max

a
p(a0,0, s0,0) (3.8)

For the activity a0,1 in segment (T0,1, s0,1), there are two possibilities of its stage:

• a0,1 is on stage 1 of a new activity.

10



Figure 3.2: (a) A merged segment (T1,0, s1, 0). (b) The stage table for a1,0.

• a0,1 is on stage 2 of the same activity of a∗
0,0. That is, a∗

0,0 is on stage 1.

Both cases are considered when solving a∗
0,1. We use p0

0,1 to denote p(a0,1, s0,1), and p1
0,1 to

denote p(a∗
0,0)p(a∗

0,0, a0,1, s0,1), and (a0
0,1, a1

0,1) to denote the most probable activities based

on different stage reasoning, respectively. Then

• a0
0,1 = arg maxa p0

0,1.

• a1
0,1 = arg maxa p1

0,1.

• a∗
0,1 = arg maxa max(p0

0,1, p1
0,1).

We use ``stage table'' to store the result of probability computation and activity labeling.

LetBl,k denote a stage table of the activity al,k. ThenB0,0 is a 1×1 table, whereB0,0(0, 0)

stores a 2-tuple (a∗
0,0, p∗

0,0). Figure 3.1(b) shows that a0,0 is ``putting clothes on'' but p∗
0,0 is

low 0.3. It indicates that there exists noises (i.e., other exsited objects in T0,0). sB0,1 is a

2 × 2 table, where the first column stores information of the activity on stage 1. B0,1(0, 0)

stores the result (a0
0,1, p0

0,1) under the condition that a0,1 is on stage 1. Otherwise,B0,1(1, 0)

stores (a∗
0,0, p∗

0,0) andB0,1(1, 1) stores (a1
0,1, p1

0,1) under the condition that (a0,0, a0,1) are on

stage 1 and 2 of a same activity, respectively. Now segment (T0,0, s0,0) and new segment

(T0,1, s0,1) are merged to the segment (T1,0, s1,0). Since there is no segment before it, a∗
1,0

is estimated in a way similar to a∗
0,0. Figure 3.2(b) shows that a1,0 is ``'laundry on stage

1'' and p1,0 is higher, since the relative score of clothes is increasing after merging s0,0 and

s0,1.
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Figure 3.3: (a) A Possible stage orders for coming segment (T0,2, s0,2). (b) The stage table
for a0,2.
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We continue to explain the inference process when next segment (T0,2, s0,2) comes.

Similar to the case in T0,1, activity a0,2 may be related to the same event of previous

segments. But its situation is a little bit more complicated than that of a0,2:

• a0,2 is on stage 1 of a new activity.

• a0,2 is on stage 2 of the same activity of a0
0,0, a0

0,1 or a0
1,0(i.e., (a0

0,0, a0
0,1, a0

1,0) is on

stage 1).

• a0,2 is on stage 3 of the same activity of a0
0,0 and a1

0,1 (i.e., (a0,0, a0,1) are on stage 1

and 2, respectively).

Figure 3.3 shows different interleaved cases. Let aprev =
{
a|a0

0,0, a0
0,1, a0

1,0

}
The cor-

responding probabilities (p0
0,2, p1

0,2, p2
0,2) and most probable activities (a0

0,2, a1
0,2, a2

0,2) are

given as follows.

• stage 1:

p0
0,2 = p(a0,2, s0,2), a0

0,2 = arg maxa p0
0,2.

• stage 2:

p1
0,2 = maxprev,ap(a0

prev)p(a0
prev, a0,2, s0,2),

a1
0,2 = arg maxa p1

0,2.

• stage 3:

p2
0,2 = maxprev,ap(a1

prev)p(a1
prev, a0,2, s0,2),

a2
0,2 = arg maxa p2

0,2.
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Figure 3.4: Conditions on new segment (T0,3, s0,3). (a) The grown temporal pyramid. (b)
The stage table for a0,3.

• Finally, a∗
0,2 = arg maxa(p0

0,2, p1
0,2, p2

0,2).

Since s0,2 indicates that the dominant object is ``cell phone'' (the person now is using

a cell phone). a∗
0,2 is most likely ``using a cell phone'', while the possibility of other se-

quences are low, as shown in Figure 3.3(b). Now here comes the segment (T0,3, a0,3), we

see that it indicates an active object as ``washing machine''. If a0,3 is on stage 2, then there

are four activity candidates on stage 1 of the same activity of a0,3: (a0
0,0, a0

0,1, a0
0,2, a0

1,0),

the computation for (a1
0,4, p1

0,4) is similarly to the case in (a1
0,3, p1

0,3. Figure 3.4 shows that

when a0
1,0 is considered in stage 1, the probability of ``laundry on stage 2'' will be high.

Because a0
1,0 with a high probability of ``laundry on stage 1''

Let a∗
w denote themost probable event at framew, wherew denotes the current position

of the sliding window. Then as the sliding window moves through two segments, there

are multiple activities candidates at same time. For example a∗
0,1 and a∗

1,0 since the two

segments are overlapped. We simply choose the activity with higher probability for a∗
w.

A complete description of the online inference algorithm is stated in Table 3.1.
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3.5 Algorithm

Table 3.1: The online activity recognition algorithm
Input:
The feature vector of each frame: f ,
Detection threshold: Threshold
Output:
Activity label for each segment
for each segment
Incoming new segment snew

If snew = is not similar to s0,k−1
s0,k = snew

Phase 1: Merge and build the pyramid
Phase 2: Refresh the pyramid
Phase 3: Inference
Ifp∗

w > Threshold
return a∗

w as the activity detected
ELSE
Discard snew

Phase 1: Merge and build the pyramid Here we omit the object detection in the

procedure, which means that once a new segment snew arrives, feature vector for each

frame in the segment fi is known. If the index of the new segment is multiple of 2, we go

through each level of the pyramid and try to merge the existing segments to become new

ones as eq 3.7 describes.

Phase 2: Refresh the pyramid Then we discard some segments in each level of

the pyramid that are too far from the current segment because of two reasons: First, the

high level segments merged by lots of low level segments may represent a long duration

containing large amount of variation of observations, this is more likely that the subject

is already changed the ongoing activity than remaining in the same one; Second, the con-

nections between current segment and the segments happened before normally drops as

time gone by.

Phase 3: Inference In the last phase, we will have new segments in each level come

from the meging in phase 1 or the just arrived new observation. For each of the new seg-

15



Figure 3.5: the system flow of our system

ments we use the process describe by above to find out the best activity label predition of

the current observation.
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Chapter 4

Experiments and Results

4.1 Experiment 1

4.1.1 Dataset

We use the well-annotated, high-qulity dataset introduce by [1]. It contains 10 hours

long vidoe clips composed of 20 people performing their activity of daily livings(ADLs).

The videos are shot by chest-mounted GoPro camera. the videos are in 1280x960 defina-

tion and 30 frames per second with 170 degrees viewing angle.

This dataset is challenging because of the unscripted activites, cluttered background

and diverse environments. It contains 19 ADLs (table 4.2) suitable for experiments, four

of them are multi-stage activities which means they are interleaved so the stages of one

activity is not continuously shown in the video. Unlike [1] that considers this problem as a

multi-class classification, our system utilizes conditional random fields, which transforms

this problem into sequence labeling. We have embedded a general purpose CRF toolkit

Pre-segmented
STIP 0.165

SVM+IO 0.768
CRF+IO 0.785

Table 4.1: The average precision of pre-segmented videos

17



activity multi-stage avg. duration(secs) std(secs)
combing hair no 26.50 9.00
make up no 108.00 85.44

brushing teeth no 128.86 45.50
dental floss no 92.00 23.58

washing hands(face) no 76.00 23.33
drying hands(face) no 26.67 13.06

laundry yes 215.50 142.81
washing dishes no 159.60 154.39
moving dishes no 143.00 159.81
making tea yes 143.00 71.81

making coffee yes 85.33 54.45
drinking water bottle no 70.50 30.74
drinking water tap no 8.00 5.66

making cold food/snack no 117.20 96.63
making hot food yes 130.2 70.50
vacuumning no 77.00 60.81
watching TV no 189.60 98.74
use computer no 105.60 32.94
using cell no 18.67 9.45

Table 4.2: The activities of daily life(ADLs) contained in the dataset. Multi-stage activi-
ties are those interleaved or co-occurrent.

Temporal Pyramid Bag
SVM+IO 0.607 0.537
Ours 0.656 0.605

Table 4.3: The average precision of our system working with ideal active and passive
object annotations, plus the comparison to previous methods. The column "bag" is the
result detected by sliding window alone. The column "temporal pyramid" is the result
detected by sliding window and temporal pyramid. Note that the precision of Ours is at
the recall rate of 0.7.
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Figure 4.1: Comparison between with and without temporal pyramid. To the left is cor-
rectly detected "making tea" in sliding window with temporal pyramid ; while to the
right(Bag) is a failed case "drinking water bottle" using sliding window alone.

Figure 4.2: Single-stage results detected by our system

[15] in our system for all the CRF utilities.

4.1.2 Evaluation

We use 1-vs-all cross validation to train our models so that no subject will be include

both in training set and test data. The training sentences are produced by action annotations

including start frame, end frame, stage and activity label. Single-stage activities are single

word sentences in the CRF; for those multi-stage activities being interleaved in the video,

we take all the seperated stages for the particular activity to be sequential sentence as

training data. The followings are:

1. Activity detection by conditional random field over pre-segmented videos
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Figure 4.3: The recall-precision curve of the ideal object detection. Dotted blue line is
the result of sliding window without temporal pyramid. Solid red line is the result with
temporal pyramid. Green dotted line is the result detected by [1]

Figure 4.4: The recall-precision curve of the real object detection. Blue dotted line is
the result of sliding window without temporal pyramid. Red solid line is the result with
temporal pyramid.

20



2. Comparison of sliding windowwith or without temporal pyramid using ideal objects

annotation

3. Comparison of sliding window with or without temporal pyramid using DPM ob-

jects detection

First we have tested the accuracy in pre-segmented video by the action annotation of the

dataset. Each segment absolutely contains at least one activity performed in its interval.

For the first experiment, result using spatial-temporal interesting points as feature [16] is

also listed in table for reference. Note that the STIP method is unable to be applied with

the ideal object annotation thus the accuracy is relatively low. The result shows that by

using the same object feature, the performance of conditional random field is the same as

SVM.

Then we have experimented the system with sliding window, namely a 300 frames

sliding window as a segment in the first level of pyramid.

For Comparison of sliding window with or without temporal pyramid using ideal ob-

jects annotation, we use the ideal object annotation provided by [1] as object features.

The result of (SVM+IO) [1] is listed in table 4.3. The result of our method is in the

row (ours).The comparison of with and without pyramid recall and precision curve is fig-

ure 4.3. The result shows that with help of temporal pyramid, the precision is better than

when recall rate is higher than 0.5.

For Comparison of sliding window with or without temporal pyramid using DPM ob-

jects detection, we use the deformable part basemodel (DPM) [17] detection result provide

by [1]. The DPM detection result is the detection score of each object in each frame. The

detection score higher than -0.75 for an object is considered "exist" in the frame. The

comparison is in figure 4.4. It has clealy shown that by the help of temporal pyramid, the

activity detection with imperfect object detection can be improved.
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Figure 4.5: Sceenshots of our system working with the customized dataset. Note that the
floating point are the detection probability.

4.2 Experaiment 2

4.2.1 Dataset

The dataset provided by [1] is in some sense a realistic one, however the activities

presented in the dataset are not equally distributed and either not frequently presented. For

example, there is only 2 out of 20 video containing interleaved activity of "making coffee";

there is only one video containing interleaved "making hot food". This means using this

dataset to evaluate the characteristic of sequence labeling of conditional random field is

not a good choice. For this reason, we have customized a dataset composed of 5 people

performing 9 kinds of lab routines list in table 4.4. The activities are equally distributed

and guaranteed to present in each video. We use this dataset to examine the effect of

applying sequence labeling to finding interleaved activities.
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activity multi-stage avg. duration(secs) std(secs)
use computer no 17.8 2.77

use cell no 17.4 5.37
wash hand no 7.4 4.27
drink water no 12 2.55
talk to people no 23.4 12.05

check the weather no 10.2 1.64
reading no 20 5.7

make coffee yes 10.8 , 18.4 7.56 , 5.6
make photocopy yes 11.6 , 26.6 2.07 , 11

Table 4.4: The activities of lab routines contained in the dataset. Multi-stage activities are
those interleaved or co-occurrent.

object average precision
passive cup 0.055

passive dispenser 0.025
active laptop 0.34
active cup 0.073
active book 0.04
active cell 0.005

active window 0.03
active papers 0.08
active human 0.05
active copier 0.025

Table 4.5: The averege precision of objects detected by cacade classifier in our dataset.
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Figure 4.6: Comparison of sliding window with or without temporal pyramid in our
dataset. The red solid line is with pyramid; The blude dotted line is without pyramid

4.2.2 Evaluation

We perform the following experiments:

1. Object detection using LBP feture object detection

2. Comparison of sliding windowwith or without temporal pyramid using ideal objects

annotation

3. Comparison of single-stage inference and multi-stage inference using ideal objects

annotation

First we use cascade classifier with LBP feaure [18] to test the possibility of real-time

application. There are 21 object types performed in this dataset but only 12 of then are

suitable for cascade classifier training, in other words, the other 9 types of objects are

rarely seen in the view, mostly shown with occlusion or the variation of view angle are

too diverse. The detection result is in table 4.5. To tell the truth, it is not acceptable for

futher usage so we use ideal object annotations as input feature in the next experiment.

We also evaluate the computation time of the object detection in our system. With a 30
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Figure 4.7: Comparison between single-stage and multi-stage activity inferencing, con-
sidering all activities. The blue dotted line is the result of single-stage activity inferecing
; The red solid line is the result of maulti-stage activity inferecing.

frames sliding window (the video is in frame rate of 30), it takes 11 seconds in average

for object detection and 0.0292 seconds in average for the rest of the computation, which

means the bottleneck is the object detection for a real-time application.

The comparison of slidingwindowwith or without temporal pyramid using ideal objects

annotation shows that the performance is almost the same. We believe that this is because

of the variation in duration is relatively small than the dataset [1].

In this experiment, we evaluate the effect of using a stategy of label sequence to find the

interleaved activities. The comparison is made by using two different conditional random

field models, one is trained with sequence data, the other is trained with single state data

only. In other word, the second model is similar to Naive Bayes model which does not

consider neighboring state but only observations of the current state. The result is shown

in figure 4.7 4.8. The result reveals that the multi-stage inferencing produce small but

noticeable improvement.

We conclude that in such simple scenario where the interleaved activities are not simi-

lar with each other (for example, the objects feature have hardly any connection between

make coffee and make photo copy), the benefit of multi-stage inference is limited. How-
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Figure 4.8: Comparison between single-stage andmulti-stage activity inferencing, consid-
ering multi-stage activities only. The blue dotted line is the result of single-stage activity
inferecing ; The red solid line is the result of maulti-stage activity inferecing.

ever, we still have expectation that the multi-stage inference will come into effect when

facing complex scenarios.
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Chapter 5

Conclusion

In this paper, we purpose a method to solve the problem of activity recognition in first-

person-view videos by using high-level object appearance as visual clue, feature aggrega-

tion of temporal pyramid and conditional random fields.

• Conditional Random Fields

– We are known to be first using CRF for activity recognition in first-person-

view

– We have proved that CRF is capable to handle this problem

• Temporal Pyramid

– Improves imperfect object detection

– Improves activity detection in complex environment

• Overall

– Our method is better than state-of-the-art when using ideal object detection

– Multi-stage sequence finding produce small but noticeable improvement
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