Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56822
Title: 利用各種共現特徵來增進人臉辨識效能
The Use of Various Statistical Co-occurrence Patterns for Boosting Face Tagging
Authors: Yi-Ping Hsu
許翊玶
Advisor: 鄭卜壬
Keyword: 標記,人臉標記,標籤推薦,人臉辨識,
photo,tag recommendation,face tagging,face recognition,
Publication Year : 2014
Degree: 碩士
Abstract: 隨著行動裝置的發達,照片的數量也隨之急速提升,如何自動化人
臉標籤也成為一個重要的議題,最常見的做法微使用人臉辨識系統,
但現今人臉辨識技術有其侷限,在各種不利因素下無法正確辨認出使
用者,造成只有部分標籤的情況。在只有部分標記的情況下,本研究
提出了利用人與人間的共同出現的行為模式來增進人臉標記。首先我
們對資料做了詳細觀察,並提取出使用者之間共同出現的特徵,利用
這些特徵建構出半監督式的機率模型,此機率模型能夠根據已知的部
分標籤去推薦剩餘的未知標籤之候選人。我們所提出的模行能夠建置
在人臉辨識系統所產出的部分標籤的結果,且沒有使用任何影像辨識
技術。最後,無論在資料有受到控制(Facebook) 與沒有控制(Picasa) 的
環境下進行實驗,結果證明在兩種情況下,此方法的效能都高於常見
的現行方法。
Face recognition benefits many applications such as photo searching and
annotation. However, such technique is not robust enough to identify people
under widely varying photo conditions. In this paper, we propose a semisupervised
probabilistic graphical model for boosting face recognition by predicting
the names of the unrecognized faces in a statistical manner. Different
from pairwise co-occurrence context adopted by conventional approaches, we
explore more useful context such as the co-occurrence between subgroups,
the different frequency of occurrence for people, and the different numbers of
people appearing in photos, and integrate them into our model. Experiments
on Facebook and Picasa demonstrate that the proposed model can effectively
improve the recognition performance, compared to both of unsupervised and
supervised learning methods.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56822
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
381.3 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved