請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56822完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭卜壬 | |
| dc.contributor.author | Yi-Ping Hsu | en |
| dc.contributor.author | 許翊玶 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:50:41Z | - |
| dc.date.available | 2019-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-08 | |
| dc.identifier.citation | [1] D. Anguelov, Kuang chih Lee, S.B. Gokturk, and B. Sumengen. Contextual identity
recognition in personal photo albums. In Computer Vision and Pattern Recognition, 2007. CVPR ’07., 2007. [2] Marc Davis, Michael Smith, Fred Stentiford, Adetokunbo Bamidele, John Canny, Nathan Good, Simon King, and Rajkumar Janakiraman. Using context and similarity for face and location identification. In Proceedings of the IS&T/SPIE 18th Annual Symposium on Electronic Imaging Science and Technology. Press, 2006. [3] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, N.V. Chawla, Jinghai Rao, and Huanhuan Cao. Link prediction and recommendation across heterogeneous social networks. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, 2012. [4] A.C. Gallagher and Tsuhan Chen. Using group prior to identify people in consumer images. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on. [5] A.C. Gallagher and Tsuhan Chen. Clothing cosegmentation for recognizing people. In Computer Vision and Pattern Recognition, 2008. CVPR 2008., 2008. [6] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Face recognition from caption-based supervision. International Journal of Computer Vision, 96, 2012. [7] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. Information Theory, IEEE Transactions on, 47, 2001. [8] Tsung-Ting Kuo, Rui Yan, Yu-Yang Huang, Perng-Hwa Kung, and Shou-De Lin. Unsupervised link prediction using aggregative statistics on heterogeneous social networks. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, 2013. [9] M. Naaman, R.B. Yeh, H. Garcia-Molina, and A. Paepcke. Leveraging context to resolve identity in photo albums. In Digital Libraries, 2005. JCDL ’05. Proceedings of the 5th ACM/IEEE-CS Joint Conference on, 2005. [10] Kerry Rodden and Kenneth R. Wood. How do people manage their digital photographs? In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03, 2003. [11] Z. Stone, T. Zickler, and T. Darrell. Autotagging facebook: Social network context improves photo annotation. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08., 2008. [12] Z. Stone, T. Zickler, and T. Darrell. Toward large-scale face recognition using social network context. Proceedings of the IEEE, 98, 2010. [13] Gang Wang, Andrew Gallagher, Jiebo Luo, and David Forsyth. Seeing people in social context: Recognizing people and social relationships. In Proceedings of the 11th European Conference on Computer Vision: Part V, ECCV’10. Springer-Verlag, 2010. [14] Jay Yagnik and Atiq Islam. Learning people annotation from the web via consistency learning. In Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, MIR ’07, 2007. [15] Lei Zhang, Longbin Chen, Mingjing Li, and Hongjiang Zhang. Automated annotation of human faces in family albums. In Proceedings of the Eleventh ACM International Conference on Multimedia, MULTIMEDIA ’03. ACM, 2003. [16] Ming Zhao and Siliang Liu. Automatic person annotation of family photo album. In Proc. International Conf. on Image and Video Retrieval, pages 163–172, 2006. [17] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A literature survey. ACM Comput. Surv., 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56822 | - |
| dc.description.abstract | 隨著行動裝置的發達,照片的數量也隨之急速提升,如何自動化人
臉標籤也成為一個重要的議題,最常見的做法微使用人臉辨識系統, 但現今人臉辨識技術有其侷限,在各種不利因素下無法正確辨認出使 用者,造成只有部分標籤的情況。在只有部分標記的情況下,本研究 提出了利用人與人間的共同出現的行為模式來增進人臉標記。首先我 們對資料做了詳細觀察,並提取出使用者之間共同出現的特徵,利用 這些特徵建構出半監督式的機率模型,此機率模型能夠根據已知的部 分標籤去推薦剩餘的未知標籤之候選人。我們所提出的模行能夠建置 在人臉辨識系統所產出的部分標籤的結果,且沒有使用任何影像辨識 技術。最後,無論在資料有受到控制(Facebook) 與沒有控制(Picasa) 的 環境下進行實驗,結果證明在兩種情況下,此方法的效能都高於常見 的現行方法。 | zh_TW |
| dc.description.abstract | Face recognition benefits many applications such as photo searching and
annotation. However, such technique is not robust enough to identify people under widely varying photo conditions. In this paper, we propose a semisupervised probabilistic graphical model for boosting face recognition by predicting the names of the unrecognized faces in a statistical manner. Different from pairwise co-occurrence context adopted by conventional approaches, we explore more useful context such as the co-occurrence between subgroups, the different frequency of occurrence for people, and the different numbers of people appearing in photos, and integrate them into our model. Experiments on Facebook and Picasa demonstrate that the proposed model can effectively improve the recognition performance, compared to both of unsupervised and supervised learning methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:50:41Z (GMT). No. of bitstreams: 1 ntu-103-R01922012-1.pdf: 390456 bytes, checksum: de83f1e5c038f879de0797182a57e5cc (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝ii
中文摘要iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Related work 5 3 Data Observation 7 3.1 Co-occurrence entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Photo similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Time neighboring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Problem Definition 13 5 Model Framework 15 5.1 Ranking Factor Graph Model . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1.1 Local Feature Function . . . . . . . . . . . . . . . . . . . . . . . 16 5.1.2 Candidate Correlation Function . . . . . . . . . . . . . . . . . . 19 5.2 Model learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6 Experiments 23 6.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 Comparing Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3.1 Factor contribution analysis . . . . . . . . . . . . . . . . . . . . 25 6.3.2 Efficiency of labeled data . . . . . . . . . . . . . . . . . . . . . 26 6.3.3 Effect of User Frequency . . . . . . . . . . . . . . . . . . . . . . 27 6.3.4 Effect of Number of People . . . . . . . . . . . . . . . . . . . . 28 6.3.5 Effect of time and scalability . . . . . . . . . . . . . . . . . . . . 28 6.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 Conclusion 31 Bibliography 33 | |
| dc.language.iso | en | |
| dc.subject | 人臉標記 | zh_TW |
| dc.subject | 標記 | zh_TW |
| dc.subject | 標籤推薦 | zh_TW |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | face tagging | en |
| dc.subject | tag recommendation | en |
| dc.subject | photo | en |
| dc.subject | face recognition | en |
| dc.title | 利用各種共現特徵來增進人臉辨識效能 | zh_TW |
| dc.title | The Use of Various Statistical Co-occurrence Patterns for Boosting Face Tagging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信希,曾新穆,陳建錦,張嘉惠 | |
| dc.subject.keyword | 標記,人臉標記,標籤推薦,人臉辨識, | zh_TW |
| dc.subject.keyword | photo,tag recommendation,face tagging,face recognition, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 381.3 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
