Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5446
標題: del Pezzo 曲面之幾何
On Geometry of Del Pezzo Surfaces
作者: Chin-Yi Lin
林金毅
指導教授: 陳榮凱
關鍵字: del Pezzo 曲面,奇點,complement,凱勒─愛因斯坦距離,不消沒定理,
del Pezzo surfaces,singularities,complement,Kahler-Einstein metrics,nonvanishing,
出版年 : 2014
學位: 博士
摘要: 本文介紹del Pezzo曲面之研究。早期的研究主要以光滑曲面為對向,但近年則多考慮帶有奇點的曲面。因此第二章即討論各種奇點,始自第三章起正式定義del Pezzo 曲面,介紹光滑曲面的分類。第四章介紹Shokurov發展的complement 理論,並在第五章的weighted complete intersection 中給出例子。第六章介紹凱勒─愛因斯坦距離和del Pezzo曲面的關係。第七章與第八章是作者的研究結果利用黎曼─羅赫定理計算尤拉示性數並得到一種特別的不消沒定理。
The thesis in on the geometry of del Pezzo surfaces. Early researches focused on smooth surfaces, while recently surfaces with singularities have been mostly considered. Consequently, in Chapter 2, different types of singularities are first discussed, and then del Pezzo surfaces can be defined formally in Chapter 3. Research on smooth surfaces are also given there. In Chapter 4, we introduce the complement theory developed by Shokurov, and we give some examples of weighted complete intersection in Chapter 5. Chapter 6 is about the relation between Kahler-Einstein metrics and del Pezzo surfaces. In Chapter 7 and Chapter 8, we introduce our research result. We use Riemann-Roch theorem to calculated Euler characteristics, and then give a special type of nonvanishing theorem.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5446
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.06 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved