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摘要

本文介紹 del Pezzo 曲面之研究。早期的研究主要以光滑曲面為對向，但近年則多考

慮帶有奇點的曲面。因此第二章即討論各種奇點，始自第三章起正式定義 del Pezzo 曲

面，介紹光滑曲面的分類。第四章介紹 Shokurov 發展的 complement 理論，並在第五

章的 weighted complete intersection 中給出例子。第六章介紹凱勒─愛因斯坦距離和

del Pezzo 曲面的關係。第七章與第八章是作者的研究結果利用黎曼─羅赫定理計算尤

拉示性數並得到一種特別的不消沒定理。

關鍵字：del Pezzo 曲面、奇點、complement、凱勒─愛因斯坦距離、不消沒定理
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Abstract

The thesis in on the geometry of del Pezzo surfaces. Early researches focused on

smooth surfaces, while recently surfaces with singularities have been mostly consid-

ered. Consequently, in Chapter 2, different types of singularities are first discussed,

and then del Pezzo surfaces can be defined formally in Chapter 3. Research on

smooth surfaces are also given there. In Chapter 4, we introduce the complement

theory developed by Shokurov, and we give some examples of weighted complete

intersection in Chapter 5. Chapter 6 is about the relation between Kähler-Einstein

metrics and del Pezzo surfaces. In Chapter 7 and Chapter 8, we introduce our re-

search result. We use Riemann-Roch theorem to calculated Euler characteristics,

and then give a special type of nonvanishing theorem.

Keywords: del Pezzo surfaces, singularities, complement, Kähler-Einstein met-

rics, nonvanishing.
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1 Introduction

Del Pezzo surfaces are projective surfaces with ample anticanonical line bundles.

They have been a popular research topic for a long time since they are Fano and

thus rationally connected, and also come out naturally from MMP. Smooth del

Pezzo surfaces have been classified completely. Studies of singular del Pezzo surfaces

remain an active research area and draw a lot of attention recently. There are several

possible definition of a singular del Pezzo surface. By a singular del Pezzo surface,

we mean a normal surface with at worst klt singularities such that the anticanonical

divisor is nef and big. We remark that for surfaces, klt singularities are known to be

equivalent to quotient singularities[14, 5.21]. In this paper, we shall focus on normal

del Pezzo surfaces with only cyclic quotient singularities.

Given a singular del Pezzo surface X with −KX nef and big, it is natural to

study the non-vanishing of anti-plurigenera h0(X,−mKX). Shokurov [19] proved

that there exists a uniform bound m0 for any singular del Pezzo surfaces X such that

h0(X,−mKX) > 0 for some 1 ≤ m < m0. Nevertheless, there is no effective estimate

of m0. Thus, the nonvanishing of h0(X,−mKX) for small value of m are still of

great interest. It is easy to see that h0(X,−KX) > 0 for smooth del Pezzo surfaces,

thanks to the Riemann-Roch formula. For singular surfaces, there is also a singular

Riemann-Roch formula by Reid [18, III (8.6)]. By using the singular Riemann-Roch

formula, Prokhorov and Verevkin [17, Cor. 1.3] showed that h0(X,−KX) > 0 if

X has the Picard number ρ = 1, and contains exactly 5 singularities. Later, it

was shown in [1] that it is impossible to have 5 singularities. On the other hand,

there exists an example of weighted hypersurface X256 ⊆ P(13, 35, 81, 128) such

that h0(X,−mKX) = 0, for m ≤ 12, since OX(−KX) = O(1) (cf. [4, Table 2.]).

Therefore, one cannot expect the general effective bound to be very small.

We would like to draw the reader’s attention to the recent study of singular

Fano 3-folds. For Q-Fano 3-folds with nef and big anticanonical divisors and with

at worst terminal singularities, the work [5] of Meng Chen and Jungkai Chen shows

h0(X,−6KX) > 0.

In this paper, we consider surfaces with singularities of type 1
r
(1, 1). There are

two reasons for this. First of all, surfaces with singularities of type 1
r
(1, 1) have very

nice combinatorial properties in the singular Riemann-Roch formula. We are able

1



to derive an interesting type of non-vanishing.

Theorem 1.1 (Main Theorem). Suppose X is a del Pezzo surface with only singu-

larities of the form 1
r
(1, 1). Then h0(X,−mKX) > 0 for m = 1 or 3.

Moreover, given a surface with cyclic quotient singularities, we develop a partial

resolution via particular choices of weighted blowups which we call L-blowups. L-

blowups transform cyclic quotient singularities to singularities of the form 1
r
(1, 1).

In principle, Euler characteristics χ(X,−mKX) for small m are preserved under

L-blowups. However, situation varies depending on types of singularities. In any

event, we have

Proposition 1.2. Let Y → X be an L-blowup. Then χ(X,−KX) = χ(Y,−KY ).

1.1 Notation and Conventions

In this paper, we always work over the complex number field C.

Notation:

ζ = ζr: a primitive r-th root of unity in C

µr: the group of all r-th roots of unity in C

e1, e2, . . . , en: the standard basis of Rn

All schemes and varieties are assumed to be at least quasi-projective. For Q-

Cartier divisors, the intersection numbers are defined by extending the intersection

number of Cartier divisors by Q-linearity.

2 Singularities

2.1 Basic properties

We study singularities formally isomorphic to cyclic quotients of An. First, we

recall some facts about quotient varieties.

Given an affine variety X = SpecA with a finite group G action, we construct

the affine quotient Y = XG = SpecAG and the natural quotient map f : X → Y

induced by the inclusion AG ↩→ A. When X is merely quasi-projective, one covers

X with G-invariant affine open sets, and finds the affine quotients can be glued

together. It is easy to see that

2



Fact 2.1. i) X is normal =⇒ Y is normal,

ii) X is Q-factorial =⇒ Y is Q-factorial.

Conversely, given a normal variety Y , we may pick the normalization X of Y

in a Galois extension over the function field of Y . Then Y = XG, where G is the

Galois group.

Definition 2.2. (Quotient singularities)

(i) Given a1, . . . , an ∈ N, let µr acts on An by

ζ · (x1, x2, . . . , xn) 7→ (ζa1x1, ζ
a2x2, . . . , ζ

anxn)

. Denote the quotient X0 by An/µr or An/1
r
(a1, . . . , an) to be the standard quotient

singularity of type 1
r
(a1, . . . , an). Usually we assume gcd(a1, . . . , an) = 1.

(ii) Let p ∈ X be a point. If locally near p, there is a map to a standard quotient

singularity: φ : (p ∈ X) → (0 ∈ X0) inducing formal isomorphism Ô0,X0 → Ôp,X ,

we call (p ∈ X) a quotient singularity of type 1
r
(a1, . . . , an), or a 1

r
(a1, . . . , an) point.

The morphism required in the definition is actually étale, that make it possible

to pullback resolutions of standard quotient singularities to general ones.

Proposition 2.3. Keep the notation as in Definition 2.2. φ is étale near p.

Proof. Since étaleness is an open condition, it suffices to prove this for local ho-

momorphism O0,X0 → Op,X . By faithful flatness of completion, we only need that

Ô0,X0 → Ôp,X is étale, which is an isomorphism by assumption, and hence the

proof.

The following proposition says that quotients of smooth varieties by µr actions

indeed give rise to quotient singularities.

Proposition 2.4. Let µr act on a smooth variety X, and p ∈ X be an isolated fixed

point. Let the quotient be (p̄ ∈ X̄). Then it is a quotient singularity.

Proof. We may assume X = SpecA, an invariant open set, is affine. Since µr acts

on the maximal ideal p, we get the eigenspace decomposition:

p =
r−1⊕
i=0

Ii

3



where the action is given by ζ · s = ζ is, ∀s ∈ Ii.

We may choose s1, . . . sn ∈ A satisfying ζ · si = ζaisi so that they form a regular

system of parameters of Ap, and obtain a morphism: s : A → An defined by

x1 = s1, . . . , xn = sn. s induces an isomorphism of completed local rings.

Let µr act on An by ζ · (x1, x2, . . . , xn) 7→ (ζa1x1, ζ
a2x2, . . . , ζ

anxn). Then s is

equivariant, inducing the natural map s̄ : X̄ → X0 between quotient varieties. We

need to check that s̄ also induces isomorphisms of completed local rings. This is

done by Theorem 2.5 below.

Theorem 2.5. Suppose A1 → A2 is a G-equivariant local morphism such that the

maximal ideals m1, m2 are G-invariant. Set Bi = AG
i , for i = 1, 2. Then Bi is local.

If the induced map Â1 → Â2 is an isomorphism, then so is B̂1 → B̂2.

We prove Theorem 2.5 with a series of lemmata.

Lemma 2.6. Suppose B ⊆ A be a finite extension of noetherian rings. Let I be an

ideal of B and Jn = InA∩B. Then the I-adic and Jn-adic topologies are the same.

Proof. Firstly, In ⊆ Jn is trivial.

Conversely, T = A⊕ (
⊕∞

n=1(IA)
n) is finite over B ⊕ (

⊕∞
n=1 I

n), and hence so is

the subalgebra S = B ⊕ (
⊕∞

n=1 Jn) of T .

This implies IJi = Ji+1 for i ≥ N for some N . We have then Jn = In−NJN ⊆

In−N .

Lemma 2.6 holds in particular for B = AG, where G is a finite group acting on

A. For p ∈ SpecB, Bp = (Ap)
G. Now we assume (B, n) local. A is then semilocal.

Denote by m its Jacobson radical.

Corollary 2.7. i) In A, nA-adic and m-adic topologies are the same.

ii) In B, n-adic and mn ∩B-adic topologies are the same.

Proof. i) Note that A/nA is finite over B/n, and hence an artin ring.
√
nA = m.

ii) By Lemma 2.6, n-adic, (nA)n ∩B-adic topologies, and mn ∩B-adic topology

are the same.

Lemma 2.8. Let B̂ be the n-adic completion of B, Â be the m-adic completion of

A. Then Â = A⊗B B̂, and B̂ ⊆ Â as topological subspace under n̂-adic, and m̂-adic

topologies respectively.

4



Proof. Since A ⊗B B̂ is the nA-adic completion of A, which is the same as the m-

adic completion of A (c.f. Corollary 2.7). Since B̂ is flat over B, we obtain the

inclusion.

Now assume that in Theorem 2.5, |G| ∈ A× is a unit. This holds in particular,

when A contains a field k, and char k ̸ ||G|.

Lemma 2.9. B̂ = ÂG.

Proof. Consider ι : B ↩→ A, and ϵ : A → B , which is defined by ϵ(x) = 1
|G|

∑
g∈G g·x.

Then ϵ ◦ ι =id.

Tensoring with B̂ over B, we obtain that the composition B̂ ↩→ Â → B̂ is the

identity map, and x = ϵ(x) ∈ B̂, for any x ∈ ÂG.

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. The theorem follows from taking G-invariants of the induced

map Â1 → Â2.

Remark 2.10. Singularities of normal surfaces are always isolated. We shall call a

surface quotient singularity a 1
r
(a, b) point, if the µr action is given by ζ · (x, y) 7→

(ζax, ζby).

Quotient singularities only occur on the locus where the group action is not free.

First we state an application of Hurwitz formula.

Definition 2.11. Suppose that X = SpecA, Y = SpecB are normal varieties and

f : X → Y is a finite map.

For any height-1 prime p of A, and q = p ∩ B of B, the map f induces a local

morphism of discrete valuation rings Bq → Ap. Denote the local parameters of Ap

and Bq by s and t respectively. We define the ramification index e = e(p, q) to be

the integer such that t = use for some u ∈ A×
p /

Theorem 2.12. Suppose X = SpecA, Y = SpecB are normal varieties and f :

X → Y is a finite map. Then KX = f ∗KY +
∑

ht(p)=1(e(p, p ∩ B) − 1)p, and the

sum is a finite sum.

5



Proof. Denote the residue fields of Ap, Bq by k(p), k(q) respectively. Pick a tran-

scendental basis y1, . . . , yn−1 ∈ B of k(q) over C, which is also a transcendental basis

of k(p) over C. Consider the rational n-forms ω1 = ds ∧ dy1 ∧ dy2 . . . ∧ dyn−1 and

ω2 = dt ∧ dy1 ∧ dy2 . . . ∧ dyn−1.

First we note that ω1 is the local generator of ωX at p. Indeed, by the second

exact sequence of differential [10, II. 8.4], we have the following exact sequence

pAp/(pAp)
2 → ΩAp/C → Ωκ(p)/C → 0,

and thus ΩX,p is generated by ds, dy1, . . . , dyn−1. Similarly, ω2 is the local generator

of ωY .

Fix a rational n-form ω on Y , we may also regard it as an n-form on X by pulling

back. We find the coefficient c of q in KY satisfies ω = u1t
cω1, where u1 ∈ A×. The

coefficient of p in f ∗KY is ec, and the coefficient c′ of p in KX satisfies ω = u2s
c′ω2,

where u2 ∈ A×.

Now we have
ω2 = dt ∧ dy1 ∧ dy2 . . . ∧ dyn−1

= d(use) ∧ dy1 ∧ dy2 . . . ∧ dyn−1

= se−1(ue+ sb)ω1

= se−1u′ω1.

for some b ∈ B, u′ ∈ B×
q .

We obtain c′ = ec+ (e− 1), which is the desired equality.

Remark 2.13. In terms of divisors, write KX + D = f ∗(KY + E), D =
∑

diDi,

E =
∑

bjEj. Suppose f(Di) = Ej for some i, j, then di = bje − (e − 1), i.e.,

(1− di) = e(1− bj).

Theorem 2.14. Suppose G is a finite group acting on the normal variety X, and

the action is free generically. Let f : X → Y be the quotient variety. Then

KX = π∗KY +
∑

(|GD| − 1)D, where GD is the subgroup fixing D.

Proof. We may assume that X = SpecA, Y = SpecB are affine, with fraction fields

K,L respectively. Then L = KG.

We only need to check that for any prime divisor D, corresponding to height-1

prime p of A, we have e(p, q) = |GD|, where q = p ∩ B. Consider the Dedekind

domains Bq ⊆ Aq = A⊗B Bq.

6



Denote the subgroups Ip = {g | g(a)− a ∈ pAq,∀a ∈ Aq} and Dp = {g | g(a) ∈

pAq, ∀a ∈ pAq} of G. By Hilbert’s ramification theory (cf. [15, I Prop.9.4]) and

since in characteristic 0, the residue field extension k(p)/k(q) is always separable,

we know that


r := |orbit of p| = |G|/|Dp|

f := [k(p) : k(q)] = Gal(k(p)/k(q)) = |Dp|/|Ip|

e = |Ip|

But Ip is exactly

the subgroup GD fixing D, and hence the proof.

Definition 2.15. Let G be a finite group acting on a variety X. Say the action is

free if Φ : G×X → X ×X defined by (g, x) 7→ (g · x, x) is a closed immersion.

The definition may seem strange at the first glance. However, the following

lemma tells us that, it is the same as the intuitive definition. The advantage is that

Definition 2.15 can be generalized straightforwardly to algebraic group actions on

any schemes.

Lemma 2.16. Let G be a finite group acting on a variety X. The action is free

if and only if for any closed point m ∈ X, there is no non-identity element g ∈ G,

such that g ·m = m.

Proof. We may assume that X = Spec A is affine, and G acts on A by automor-

phisms g1, . . . , gk.

First we observe that g · m = m if and only if m is g-invariant, and g acts on

A/m as identity, which means {g(a)− a | a ∈ A} ⊆ m.

Also, Φ induces the ring homomorphism ϕ : A⊗C A → A|G|, defined by a⊗ b →

(g1(a)b, . . . , gk(a)b).

Suppose that ϕ is surjective. Then there are ai, bi such that
∑

i aibi = 1, and∑
i g(ai)bi = 0 for all non-identity elements g. We have , and hence {g(a)−a | a ∈ A}

generates A.

Conversely, we are given that {g(a)− a | a ∈ A} generates A for all non-identity

elements g. For g ̸= h , we also have {g(a)−h(a) | a ∈ A} generates A. That is, there

are ai, bi such that
∑

i g(ai)bi −
∑

i h(ai)bi = 1. So the components corresponding

to g and h of
∑

i ai ⊗ bi −
∑

i 1⊗ h(ai)bi are 1 and 0 respectively. From this, we see

that ϕ is a surjective ring homomorphism.

7



Proposition 2.17. Suppose G is a finite group acting on an integral scheme X =

SpecA freely. Then A is locally free over B = AG of rank |G|. Moreover, A is étale

over B.

Proof. For p ∈ Spec B, let k be the algebraic closure of the residue field k(p). We

observe that the G also acts freely on the geometric fiber Xp = SpecA′, where

A′ = A ⊗B k . Indeed, the surjective homomorphism ϕ : A ⊗C A → A|G| remains

surjective after tensoring with k. Moreover, since we have the splitting ϵ : A → B

ϵ(a) = 1
|G|

∑
g∈G g(a) in characteristics zero, tensoring with k gives we A′G = k.

Now, by the structure theorem of artin rings, A′ =A1 × A2 × . . . × Am, and

there is a canonically defined subring A0 = k × . . . × k (|G| copies) such that the

composition A0 ↩→ A′ → A′/
√
0 ∼= A0 is the identity map. G also acts on A0

by permuting components. Since we must have AG
0 = k, G acts transitively on

components. From this we see all Ai are isomorphic, and G acts on A′ by permuting

components as well. But then A′G = {(x, x, . . . , x)|x ∈ A1} = k. We must have

A1 = k, and A′ = A0

Counting dimensions over k gives dimk A
′ = |G|. We find dimk(p)A⊗ k(p) = |G|

for all p ∈ SpecB, and hence A is locally free over B of rank |G|. A being flat,

we only need to check A over B is unramified, which can be checked on geometric

fibers. But A′ = k × . . .× k, it is then obvious that ΩA′/k = 0.

Remark 2.18. When no divisor of X is fixed by a non-identity element in G, we see

the quotient map π : X → Y is étale in codimension 1, and the Hurwitz formula

reads KX = π∗KY .

2.2 Log singularities

Consider a variety X together with a Q-divisor D =
∑

i diDi, where di ∈ Q

and Di are prime divisors of X. If 0 ≤ di ≤ 1 (resp. di ≤ 1), then we call D

a boundary (resp. subboundary). If KX + D is Q-Cartier, then we call (X,D) a

log pair. We usually assume that X is normal, and D is a boundary unless stated

otherwise. By Hironaka’s desingularization theorem, there is a proper birational

morphism f : Y → X such that Y is smooth, and the proper transform of
∑

Di

and the exceptional divisors are simple normal crossing (SNC, for short). Denote
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by D̃i the proper transform of Di, and set D̃ =
∑

diD̃i. We may write

KY + D̃ = f ∗(KX +D) +
∑
j

a(X,D;Ej)Ej

for some a(X,D;Ej) ∈ Q. Here Ej are exceptional divisors of f .

For a non-exceptional divisor E, define

a(X,D;E) =

−di, if E = D̃i,

0, otherwise.

It is well known that a(X,D;E) is independent of log resolutions, and is called

the discrepancy of E with respect to (X,D). We write X only instead of (X, 0) if

D = 0. Discrepancies make a nice measure of singularities of pairs as follows.

Definition 2.19. Given a log pair (X,D), we introduce the following:

i) (X,D) has only log canonical singularities or is log canonical, denoted lc, if

a(X,D;E) ≥ −1 for all E, and for all log resolutions.

ii) (X,D) has only Kawamata log terminal singularities or is klt if a(X,D;E) >

−1 for all E, and for all log resolutions. In particular, 0 ≤ di < 1 .

iii) (X,D) has only pure log terminal singularities or is plt if a(X,D;E) > −1

for all exceptional E, and for all log resolutions.

iv) The log canonical threshold (lct) of (X,D) is defined by

lct(X,D) = sup{λ|(X,λD) has only log canonical singularities.}

Remark 2.20. i) The definition for log canonical and klt singularities are actually

independent of resolutions, which can be seen by using a common resolution.

ii) Being log canonical, klt, or plt is a local property. For an open cover {Uα} of

X, (X,D) is log canonical (resp. klt, plt) if and only if (Uα, D|Uα) is log canonical

(resp. klt, plt) for all α. Similarly, lct(X,D) = infα lct(Uα, D|Uα). It also makes

sense to talk about lct at a point p, namely,

lctp = sup{λ|(U, λD|U) is lc, for some neighborhood Uof p}.

We will need some facts of singularities of pairs. (cf.[13]).

Lemma 2.21. Let (X,D) and (Y,E) be log pairs. Suppose f : Y → X is a proper

birational morphism, and KY +E = f ∗(KX +D) then (X,D) is log canonical (resp.

klt) if and only if (Y,E) is log canonical (resp. klt)

9



Proof. Take a log resolution of (Y,E), which is also a log resolution of (X,D). Then

this follows directly by definition.

Lemma 2.22. Let (X,D) and (Y,E) be log pairs. Suppose f : Y → X is finite

étale, and E = f ∗D then (X,D) is log canonical (resp. klt) if and only if (Y,E) is

log canonical (resp. klt). Moreover, lct(X,D) = lct(Y,E).

Proof. First we take a resolution π : (Z, D̃) → (X,D), and write

KZ + D̃ = π∗(KX +D) +
∑
j

ajEj

Do the base change of π : (Z, D̃) → (X,D) by f , and we obtain π′ : (W, Ẽ) → (Y,E)

a resolution. Pulling back the above equation by f ′ : W → Z gives

KW + Ẽ = π′∗(KY + E) +
∑
j

ajf
′∗Ej

Now that f ′∗Ej cannot be multiple for f ′ is étale. So every discrepancy remains

invariant under pullback.

In general, being log canonical is preserved by finite morphisms.

Lemma 2.23. Let (X,D) and (Y,E) be log pairs. Suppose f : Y → X is a finite

morphism such that KY + E ≡ f ∗(KX + D). Then (X,D) is log canonical (resp.

klt) if and only if (Y,E) is log canonical (resp. klt).

Proof. First we prove the “if” part. Choose a log resolution g : Z → X, and define

W to be the normalization of a component of Y ×X Z dominating X .

W
g′

//

f ′

��

Y

f
��

Z
g

// X

Write KZ +D′ = g∗(KX +D), where D′ = g−1
∗ D−

∑
a(X,D;Dj)Dj. Pulling back

via f ′ gives f ′∗(KZ +D′) = f ′∗g∗(KX +D) = g′∗(KY + E)

Now write KW + E ′ = f ′∗(KZ + D′). By Hurwitz formula, for a divisor Ei

in E ′, with f ′(Ei) = Dj for some j, the coefficients satisfy (1 + a(X,D,Dj)) =

1
e
(1 + a(Y,E,Ei)) ≥ 0 (resp. > 0), if (Y,E) is log canonical (resp. klt).

From this, for the “only if” part, we reduced to the case f is a Galois cover,

i.e., X is a quotient variety of Y for some finite group action of G. We take now,
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besides W , Z, a G-equivariant log resolution g′ : W1 → W , and let the quotient

be Z1 = WG. Such resolution exists by the functorial construction under smooth

morphisms. Replace W,Z by W1, Z1. Note that Z1 is Q-factorial, and we can

calculate as before. For a divisor Ei in E ′ with f ′(Ei) = Dj, Hurwitz formula gives

(1 + a(Y,E;Ei)) = e(1 + a(X,D;Dj)) ≥ 0 (resp. > 0), if (X,D) is log canonical

(resp. klt).

Kawamata-Viehweg vanishing theorem is a useful theorem in birational geome-

try.

Theorem 2.24 (Kawamata-Viehweg Vanishing Theorem). Suppose X is smooth,

H is an ample Q-divisor. Then H i(X,KX + ⌈H⌉) = 0 for i > 0.

We also have the following relative version. [11, Remark 1-2-6]

Theorem 2.25 (Relative Kawamata-Viehweg Vanishing Theorem). Suppose (X,D)

is klt, H is a Q-divisor, and KX +D+H is an integral divisor.. If f : X → Y is a

projective morphism such that H is f -nef and f -big then Rf i
∗OX(KX +D+H) = 0

for i > 0.

Proof. Case 1. X is smooth, H is f -ample, and D = ⌈H⌉ −H is SNC.

We may assume that X,Y projective. Let L be an ample Cartier divisor on Y .

Replace H by H + f ∗L, we may assume that H ample by projection formula.

Consider the spectral sequence:

Ei,j
2 = H i(Y,Rf j

∗ (OX(KX+⌈H⌉)⊗OY (Y,mL))) ⇒ H i+j(X,OX(KX+⌈H⌉+mf ∗L))

. By Serre vanishing, for m large, the spectral sequence degenerates as

H0(Y,Rf j
∗ (OX(KX+⌈H⌉)⊗OY (Y,mL))) = Hj(X,OX(KX+⌈H⌉+mf ∗L)) = 0

for j > 0 by Theorem 2.24. So, Rf j
∗ (OX(KX + ⌈H⌉) = 0.

Case2. General case.

By Lemma 2.26 below, which is a corollary of Kodaira lemma, we take a res-

olution g : Z → X of (X,D) such that g∗H −
∑

j δjFj is (f ◦ g)-ample for some

0 < δj ≪ 1, and {Fj}, proper transform of D and exceptional divisors, are SNC.

We may apply Case 1 on g and h = f ◦ g, to the divisor H1 = g∗H −
∑

j δjFj.

Then for i > 0,

Rig∗OZ(KZ + ⌈H1⌉) = Rih∗OZ(KZ + ⌈H1⌉) = 0.
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Hence by spectral sequence,

0 = Rih∗OZ(KZ + ⌈H1⌉) = Rif∗g∗OZ(KZ + ⌈H1⌉).

On the other hand,

g∗OZ(KZ + ⌈H1⌉) = g∗OZ(⌈KZ +H1⌉) = OX(KX +D +H),

since ⌈KZ − g∗(KX +D)⌉ is effective exceptional by the condition of being klt.

Lemma 2.26. Suppose f : X → Y is a proper surjective morphism of normal

varieties, and H is an f -nef and f -big divisor. Then there is a resolution g : Z → X

such that g∗H−
∑

j δjFj is f◦g-ample for small 0 < δj < 1and {Fj}, proper transform

of D and exceptional divisors, are simple normal crossing.

Remark 2.27. Being f -nef and f -big is a numerical property. We easily derive the

form that for an integral divisor D′ ≡ KX +D +H, we have Rif∗(O(D′)) = 0, for

i > 0.

Here we introduce a special type of singularities called rational singularities.

Definition 2.28. X is said to have only rational singularities if for a resolution

f : Y → X , Rif∗OY = 0 for all i > 0.

Remark 2.29. It is known that the definition of rational singularities is independent

of resolutions.

Theorem 2.30. A surface with only quotient singularities is klt and thus has only

rational singularities.

By Lemma 2.23, we see quotient singularities are klt. To prove klt singularities

are rational, however, requires some work. We reproduce the proof in [14, Chap. 5]

here.

First we recall a coherent sheaf F is CM (Cohen-Macaulay) if all its stalks Fp

are CM modules. A scheme X is CM if the structure sheaf OX is CM. Projective

CM varieties can be characterized as follows:

Lemma 2.31. [14, 5.72] For a projective variety X and an ample Cartier divisor

D, X is CM if and only if H i(X,OX(−rD)) = 0 for i < n and large r.
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We have the following alternative characterization of rational singularities.

Proposition 2.32. [13, 11.9] X has only rational singularities if and only if X is

CM and for a resolution f : Y → X, we have f∗ωY = ωX .

Proof of Theorem 2.30. Suppose (X,∆) is klt, and we prove X has only rational

singularities. Let f : Y → X be a resolution. Then it suffices to prove that f∗ωY =

ωX . Write KY = f ∗(KX+∆)+E+−E−, where E+, E− ≥ 0 are exceptional divisors

without common components. Now ⌈E+⌉ = KY − f ∗(KX +∆)+E−+ {−E+}, and

(Y,E− + {−E+}) is klt for Y is smooth and E− + {−E+} is SNC with coefficients

in [0, 1). By Kawamata-Viehweg vanishing theorem, Rif∗OY (⌈E+⌉) = 0 for i > 0.

For any ample Cartier divisor D, by Larey spectral sequence

Ep,q
2 = Hp(X,OX(−D)⊗Rqf∗OY (

⌈
E+

⌉
)) ⇒ Hp+q(Y,OY (

⌈
E+

⌉
− f ∗D),

we get H i(X,OX(−D)) ∼= H i(Y,OY (⌈E+⌉ − f ∗D). Since this morphism factors

through H i(Y,OY (−f ∗D), we get the injection:

H i(X,OX(−D)) ↩→ H i(Y,OY (−f ∗D)).

By Serre duality [14, 5.71] and Kawamata-Viehweg vanishing theorem,

H i(Y,OY (−f∗D)) = Hn−i(Y, ωY (f
∗D)) = 0

for i < n, and thus H i(X,OX(−D)) = 0. This implies X is CM. On the other hand,

for i = n Serre duality gives

H0(Y, ωY (f
∗D)) = H0(X, f∗ωY (D))) � H i(X,ωX(D)),

which implies f∗ωY → ωX is surjective, and hence an isomorphism.

2.3 Toric varieties and singularities

It is easier to study cyclic quotient singularities as toric varieties. Here is a brief

review.

Given a lattice N ⊆ Rn, and a rational polyhedral cone σ, we consider the dual

lattice M = {x ∈ Rn | (x, y) ∈ Z,∀y ∈ N} and the dual cone σ∨ = {x ∈ Rn|(x, y) ≥

0, ∀y ∈ σ}. Then we define Rσ = k[Xx | x ∈ σ∨ ∩M ] ⊆ k[X] = k[X1, . . . , Xn] and

the toric variety Xσ = Spec Rσ.
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Example 2.33. The standard quotient singularity An/µr of type 1
r
(a1, a2, . . . , an) is

the toric variety defined by the lattice N = Ze1+Ze2+. . .+Zen+Z· 1
r
(a1, a2, . . . , an)

and σ the first orthant. We may assume 0 < ai < r.

For surfaces, let N be any lattice in R2, and σ a cone bounded by the rays l1

and l2. By a change of coordinates, we may assume σ the first quadrant, and write

N = Ze1 + Ze2 + Z1
r
(1, b), where 1

r
(1, b) is the nearest point of N to the y-axis in

(0, 1)× (0, 1). We always get a cyclic quotient singularity on Xσ or Xσ is smooth.

Fact 2.34. If σ′ ⊆ σ is a face, then the induced map Xσ′ → Xσ is an open

immersion.

From this, we see that given a fan Σ, i.e., a collection of cones that closed under

taking faces, we may paste all Xσ along the faces to get a variety XΣ.

Example 2.35. Consider N ⊆ R2 = Re1 ⊕Re2 a lattice and a cone defined by two

rays bounding it. We construct a fan Σ defined by several rays l0 = e1, l1, . . . , lk = e2

in order. Let the cone bounded by li−1 and li be σi, and the cone bounded byl0 and

lk is σ. We say l1, . . . , lk−1 subdivide σ into σ1, . . . , σk.

If σi ∩ N can be generated by only two elements as monoid for all i, then the

corresponding Xσi
and hence the entire XΣ is smooth.

2.4 Resolution

A standard technique to resolve quotient singularities is weighted blowup. It is

usually useful and convenient to introduce in terms of toric geometry.

2.4.1 Weighted blowups

Suppose N ⊆ R2 = Re1 ⊕ Re2 is a lattice, and a cone σ is assumed to be the

first quadrant. Then N, σ defines a toric variety X0. Consider a ray l = R>0v in σ,

such that l ∩ N = Z≥0v, If l subdivides σ into two cones σ1, σ2, and the resulting

fan defines a toric variety Y0. Call π : Y0 → X0 the standard weighted blowup along

v. We see that a standard weighted blowup turns a standard quotient singularity in

X0 to other possibly nicer standard quotient singularities in Y0.

In general, for a quotient singularity, locally we have an étale morphism X →

X0,then we set Y = Y0×X0X. In what follows, we omit the fibred product construc-
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tion, and treat all quotient singularities as if they were standard. A weighted blowup

turns a quotient singularity in X to other possibly nicer quotient singularities in Y

of the same types as those of X0 and Y0.

To see this, observe that the formal fibres Y × SpecÔX,p → Y0 × SpecÔX0,0 over

SpecÔX,p → SpecÔX0,0 are isomorphic. In particular, the fibres are isomorphic. If

q ∈ Y is a point corresponding to q0 ∈ Y0 on the fibres. The morphism SpecÔY0,q0 →

Y0 factors through Y0 × SpecÔX0,0, and hence ÔY0,q0
∼= ÔY,q. We see q and q0 are

either both smooth points or both quotient singularities of the same type.

If we pick several rays in σ, we may do weighted blowups in any order without

affecting the final result, which is defined by the resulting fan of cones.

Proposition 2.36. Suppose P ∈ X is a 1
r
(1, b) point, and we do a weighted blowup

π : Y → X for P along v = 1
r
(s, t). Then we get two possibly singular points: Q1, a

1
s
(1, −t+bs

r
) point, and Q2, a 1

t
(1, −s+b̄t

r
) point, where b̄ denotes the minimal positive

integer such that bb̄ ≡ 1(mod r). Moreover,

KY = π∗KX + ( s+t
r

− 1)E;

E2 = − r
st
;

K2
Y −K2

X = − r
st
( s+t

r
− 1)2.

where E is the exceptional divisor.

Remark 2.37. To be strict, intersection numbers are only defined for proper varieties.

However, we may assume X and hence Y are proper. The above statement only

depends on a neighborhood of P .

Proof. Let σ1 = R≥0e2 + R≥0v, σ2 = R≥0e1 + R≥0v be the two cones formed after

the subdivision. Then we write N = Ze1 + Zv + Z1
r
(1, b) = Ze1 + Zv + Z1

r
(b̄, 1)

with 1
r
(1, b) = 1

s
v+ −t+bs

sr
e2 and 1

r
(b̄, 1) = 1

t
v+ −s+b̄t

rt
e1. We find σi defines a quotient

singularity Qi of the asserted type for i = 1, 2.

Denote byD1, D2, the invariant divisors onX associated to e1, e2, and D̃1, D̃2, D̃v =

E, the invariant divisors on Y associated to e1, e2, v respectively. Then we have lo-

cally (cf. [9, p.61,89])
KX = −D1 −D2

KY = −D̃1 − D̃2 − D̃v

π∗Di = D̃i + ⟨ei, v⟩ D̃v
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We obtain that KY = π∗KX + ( s+t
r

− 1)E.

Moreover, by computing the intersection number, we have D̃1.E = 1
t
. By pro-

jection formula, we have 0 = π∗D1.E = D̃1.E + s
r
E2, and thus E2 = − r

st
. Finally,

K2
Y −K2

X = − r
st
( s+t

r
−1)2 follows from another application of projection formula.

Fact 2.38. Let X be a proper toric surface. Suppose the open set Xσ is defined

by the lattice N = Ze1 + Ze2 + Z1
r
(1, b) ⊆ R2, and cone σ is the first quadrant.

Denote by D1, D2, the invariant divisors on X associated to e1, e2. Then we have

D1.D2 =
1
r
. (cf. [9, p.97])

2.4.2 Hirzebruch-Jung continued fractions

Definition 2.39. Define ⟨un, . . . , u1⟩ to be the upper left corner entry of the matrix un −1

1 0

 un−1 −1

1 0

 . . .

 u1 −1

1 0

 .

It is convenient to define ⟨∅⟩ = 1.

Lemma 2.40. The following properties hold:

i) ⟨u⟩ = u, and ⟨un, . . . , u1⟩ = un ⟨un−1, . . . , u1⟩ − ⟨un−2, . . . , u1⟩.

ii) If u1, . . . , un ≥ 2, then ⟨un, . . . , u1⟩ > ⟨un−1, . . . , u1⟩.

iii)

 un −1

1 0

 un−1 −1

1 0

 . . .

 u1 −1

1 0


=

 ⟨un, . . . , u1⟩ − ⟨un, . . . , u2⟩

⟨un−1, . . . , u1⟩ − ⟨un−1, . . . , u2⟩

,
and ⟨un−1, . . . , u1⟩ ⟨un, . . . , u2⟩ = ⟨un, . . . , u1⟩ ⟨un−1, . . . , u2⟩+ 1.

iv)

⟨un, . . . , u1⟩
⟨un−1, . . . , u1⟩

= un −
1

⟨un−1, . . . , u1⟩
⟨un−2, . . . , u1⟩

= un −
1

un−1 −
1

un−2 −
1

. . . −
1

u1

.
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v) ⟨un, . . . , u1⟩ = ⟨u1, . . . , un⟩.

vi) Given relatively prime r > b ∈ N, one can write

r

b
= un −

1

un−1 −
1

un−2 −
1

. . . −
1

u1

,

where ui ≥ 2 are integers. Then r = ⟨un, . . . , u1⟩, and b = ⟨un−1, . . . , u1⟩.

Proof. These are some what standard, we prove (v) for reader’s convenience.

v) Note that 1 0

0 −1

−1  u −1

1 0

T  1 0

0 −1

 =

 u −1

1 0

 .

Remark 2.41. The continued fraction of r
b
above is called the Hirzebruch-Jung con-

tinued fraction. We refer the readers to [?, Notation 2.1] and [?, Sec. 2] for the

introduction and proofs. We will sometimes call a 1
r
(1, b) point a ⟨un, . . . , u1⟩ point.

Denote r = ⟨un, . . . , u1⟩, b = ⟨un−1, . . . , u1⟩, and set a = un, c = ⟨un−2, . . . , u1⟩,

b = ⟨un, . . . , u2⟩, and k = ⟨un−1, . . . , u2⟩ then we have r = ab − c,1 + rk = bb, with

a ≥ 2, 0 ≤ b̄, c < b.

Let N = Ze1 + Ze2 + Z1
r
(1, b), and the cone σ = R≥0e1 + R≥0e2. The Newton

polygon P is defined to be the convex hull of N ∩ σ\{0}. Write

P0 = e2, P1 = (a1, b1), . . . , Pk = (ak, bk), Pk+1 = e1

with 0 < a1 < . . . < ak < 1, and 1 > b1 > . . . > bk > 0, to be the lattice points

appeared on the boundary of P . We have a formula for (ai, bi).

Proposition 2.42. If we denoter = ⟨un, . . . , u1⟩, and b = ⟨un−1, . . . , u1⟩, then

k = n, and (ai, bi) = (1
r
⟨un, . . . , ui+1⟩ , 1r ⟨un−i, . . . , u1⟩),.

Proof. We prove it by induction on n. Firstly, it is clear that (a1, b1) = 1
r
(1, b).
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We find (a2, b2) is defined by 1 + b2 = a2b, with b2 < b1. In other words, q = ra2

and q′ = rb2 satisfy r = qb− q′, so q = un, q′ = ⟨un−2, . . . , u1⟩.

Now set σ′ = R≥0P1 + R≥0e1, and we find N = ZP1 + Ze1 + ZP2, with P2 =

1
b
e1 +

q′

b
P1.

The Newton polytope P ′ of N ∩σ′, which is the same as P ∩σ′ will have vertices

Pi+1 = a′ie1 + b′iP1, where (a′i, b
′
i) = (1

b
⟨un−1, . . . , ui+1⟩ , 1b ⟨un−i, . . . , u1⟩).

So (ai+1, bi+1) =(a′i +
1
r
b′i,

b
r
bi) = (1

r
⟨un, . . . , ui+1⟩ , 1r ⟨un−i, . . . , u1⟩).

Moreover, we see that 

unP1 = P0 + P2,

un−1P2 = P1 + P3,

. . .

u1Pn = Pn−1 + Pn+1.

2.4.3 Resolution and partial resolution

To resolve a 1
r
(1, b) point, we consider N = Ze1 + Ze2 + Z · 1

r
(1, b) and σ is the

first quadrant. Keep the notations in Remark 2.41

Proposition 2.43. If we do the weighted blowup along P1 = 1
r
(1, b), then we get

only one possibly singular point .

Proof. In the proof of Proposition 2.42, we find that σ′ gives a 1
b
(1, c) point.

Continue in this manner, we can do weighted blowups along Pi for i = 1, . . . , n.

Denote the resulting cone by σi for i = 0,. . . , n. Then σi ∩ N = Z≥0Pi ⊕ Z≥0Pi+1.

We see the minimal resolution of a 1
r
(1, b) point can be obtained as the composition

of weighted blowups along P1, . . . , Pk. If instead, we consider the weighted blowup

along Q1 = P1 + P2, then we obtain π1 : X1 → X, which we call a simple L-blowup.

The following proposition shows what we get after a simple L-blowup.

Proposition 2.44. If we do the weighted blowup along Q1 = P1 + P2, then we get

only two possibly singular points of types 1
a+1

(1, 1) and 1
b+c

(1, c).

Proof. First we note P2 =
1
r
(a, c), Q1 =

1
r
(a+1, b+ c). Now σ is divided into σ′

1, σ
′
2,

and we may write N = Ze2⊕ZP1⊕Q1 = Ze1⊕ZP2⊕ZQ1with P1 =
1

a+1
Q1+

1
a+1

e2
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and P2 =
1

b+c
e1 +

c
b+c

Q1. We obtain singular points of types 1
a+1

(1, 1) and 1
b+c

(1, c)

corresponding to the cones σ′
1 and σ′

2 respectively.

Continue in this manner, we do further blowups along Q2 = P2+P3, . . . , Qk−1 =

Pk−1 + Pk successively, . Denote the resulting cone by σ′
i, i = 1, . . . , n. Then

we may write N = ZP0 ⊕ ZP1 ⊕ ZQ1 = Z≥0Pn+1 ⊕ Z≥0Pn ⊕ Z≥0Qn−1 and N =

Z≥0Qi−1 +Z≥0Pi +Z≥0Qi for 0 < i < n . We then obtain n singular points of types

1

un + 1
(1, 1),

1

un−1 + 2
(1, 1),

1

un−2 + 2
(1, 1), . . . ,

1

u2 + 2
(1, 1),

1

u1 + 1
(1, 1)

corresponding to the cones σ′
0, . . . , σ

′
n respectively. The map YL → X is defined to

be an L-blowup, and we summarize the above discussion to the following.

Proposition 2.45. For a surface X with cyclic quotient singularities, there exists

an L-blowup

YL = Xn → Xn−1 → . . . → X1 → X,

such that each Xi → Xi−1 is a simple L-blowup and YL contains only singularities

of type 1
r
(1, 1).

3 Del Pezzo Surfaces

Del Pezzo surfaces are the main subject in this paper. Here is a brief introduction.

Definition 3.1. i) [6] A del Pezzo surface (resp. generalized del Pezzo) X is a

smooth surface with −KX ample (resp. nef and big).

ii) [16]A log del Pezzo surface is a log pair (X,D) with only log canonical singu-

larities, such that −(KX +D) is nef and big.

Example 3.2. It is clear that P2, P1 × P1 are del Pezzo surfaces.

Starting from X0 = P2, we perform blowups at a point repeatedly. Say,

Xr → Xr−1 → . . . → X0

Since K2
Xi

= K2
Xi−1

− 1, and K2
X0

= 9, we find K2
Xr

> 0 if and only if r ≤ 8. For

a curve C ∼= P1 in Xi−1, let C̃ be its proper transform in Xi. Then −KXi
.C̃ remains

positive (resp. nonnegative) if and only if the point blown up does not lie on C, or

C2 > −1 (resp. C2 > −2).
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Conversely, we want to find the condition to ensure −KXr is ample (resp. nef

and big). Firstly, we know r ≤ 8 and we may not blow up a point on a (−1)-curve

(resp. (−2)-curve). Now for a curve C0 ⊂ P2 of degree d ≥ 3, denote by Ci its

proper transform in Xi. We only need to decide when −KXr .Cr > 0 (resp. ≥ 0)

If the point we blown up at step i is a point of multiplicity ei of Ci−1. Then

Ci.KXi
= Ci−1.KX + ei, and pa(Ci) = pa(Ci−1)− 1

2
ei(ei − 1). (cf [10, V. Prop. 3.3,

Cor. 3.7])

We have Cr.KXr = e1+. . .+er−3d, and pa(Cr) =
1
2
(d−1)(d−2)− 1

2

∑r
i=1 ei(ei−

1) ≥ 0. Since the function g(x) = x(x− 1) is concave, let s = e1 + . . .+ er. Then

(d− 1)(d− 2) ≥
r∑

i=1

ei(ei − 1) ≥ s(
s

r
− 1) ≥ s(

s

8
− 1)

Suppose s ≥ 3d, we have (d− 1)(d− 2) ≥ 3d(3
8
d− 1), and thus d = 3, 4. When

d = 4, all inequalities take equality, and in particular e1 = . . . = e8 = 3/2, which is

absurd. When d = 3, the only case is r = 8, and ei consists of 1, 1, 1, 1, 1, 1, 1, 2, and

Cr.KXr = 0.

In conclusion, −KXr is ample if and only if r ≤ 8, and we do not blow up any

point on a (-1)-curves each time, nor do we blow up 7 points together with a singular

point on a cubic curve. We say the points satisfying this condition to be “in general

positions”. Likewise, −KXr is nef and big if and only if r ≤ 8, and we do not blow

up any point on a (-2)-curves each time. We say the satisfying this condition to be

“in almost general positions”.

Smooth surfaces with nef and big anticanonical bundle are classified as follows.

Theorem 3.3. [21, 6, Proposition 0.4]

i) A del Pezzo surface is P2, P1 × P1, or P2 blown up 1, . . . , 8 points in general

positions.

ii) A generalized del Pezzo surface is a P2, P1 × P1, the Hirzebruch surface F2,

or P2 blown up 1, . . . , 8 points in almost general positions.

We recall that the n-th Hirzebruch surface Fn is the projective bundle of OP1 ⊕

OP1(−n) over P1.

Proof. By the following Lemma 3.4, X is rational. It is well known that the minimal

rational surfaces are P2 and Hirzebruch surfaces. However, it is impossible for a del
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Pezzo surface (resp. generalized del Pezzo surface) to contain a (−2)-curve (resp,

(−3)-curve). We must have X is a blowup of P2 or F2 itself in the case of generalized

del Pezzo surfaces.

Lemma 3.4. Let X be a generalized del Pezzo surface. Then X is rational.

Proof. By Castelnuovo’s Rationality Criterion [10, V.6.2], it suffices to prove the

irregularity q = H1(X,OX) = 0 and the plurigenus P2 = H0(X, 2KX) = 0. Write

OX = KX+(−KX), and Kawamata-Viehweg vanishing theorem gives q = 0. On the

other hand, if D ∈ |2KX |, then 0 ≥ D.KX = 2K2
X > 0, which is a contradiction.

Here are some examples of log del Pezzo surfaces.

Example 3.5. Let X = Fn be the n-th Hirzebruch surface. Denote the negative

curve by C, and a fiber by f . We have the intersection pairing given by C2 = −n,

C.f = 1, and f 2 = 0. The canonical divisor is KX ≡ −2C + (−2 − n)f .(cf. [10,

V.2.11]) We find that (X, (1− 2
n
)C) is a log del Pezzo surface, and (KX+(1− 2

n
)C)2 =

n+ 4 + 4
n
.

From the above example, we see that for log del Pezzo surfaces (KX + D)2 is

unbounded. The problem seems to arise because (X, (1 − 2
n
)C) becomes more and

more singular, i.e., 1 − 2
n
→ 1 as n → ∞. Alexeev and Nikulin showed that if we

only allow ϵ-klt singularities, then there is a bounded family for log surfaces.

Definition 3.6. For ϵ > 0. Let (X,D) be a log pair, D =
∑

i diDi. We call (X,D)

is ϵ-klt if for all log resolutions we have a(X,D;Ej) > −1+ϵ , for all E, in particular,

0 ≤ di < 1− ϵ.

Theorem 3.7. [16]For ϵ > 0, Let (X,D) be a ϵ-klt log surface such that −(KX +D)

is nef. Then the class {X} is bounded. Except for the case when D = 0 and KX ≡ 0.

In particular, the theorem works for log del Pezzo surfaces.

4 Complements on Log Surfaces

The notion of complements was introduced by Shokurov. It turns out to be a

very useful tool in the study of Fano varieties. We recall some results of Shokurov.

The material of this section are mainly from [16].
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4.1 n-complement

Definition 4.1. Let X be a normal variety, and set D = S + B, where S ≥ 0 and

integral, ⌊B⌋ ≤ 0, and S,B have no common components.

We call (X,D) n-complementary and (X,D+) its n-complement if

i) n(KX +D+) ∼ 0

ii) (X,D+) has only log canonical singularities.

iii) nD+ ≥ nS + ⌊(n+ 1)B⌋

We see that when D = S = B = 0, the third condition is equivalent to D+ ≥ 0.

Also, that (X, 0) is n-complementary implies the nonvanishing, h0(X,−nKX) > 0.

Remark 4.2. (X,D) is n-complementary if and only if ∃D̄ ∈ | − nKX − nS −

⌊(n+ 1)B⌋| such that D+ = S + 1
n
(⌊(n+ 1)B⌋+ D̄) , and (X,D+) is lc.

For curves, we have a slight generalization.

Definition 4.3. Let X be a nodal curve, and set D = S + B, where S ≥ 0 and

integral, ⌊B⌋ ≤ 0, and S,B have no common components.

We call (X,D) n-semi-complementary and (X,D+) its n-semi-complement if

i) n(KX +D+) ∼ 0

ii) (X,D+) is slc, i.e. Supp D+ ∩ SingX = ∅, and all coefficients are ≤ 1

iii) nD+ ≥ nS + ⌊(n+ 1)B⌋

Then the following theorem is proven by classification.

Theorem 4.4. [12, 19.4] Let X be a nodal connected curve, and D, a boundary

divisor, is supported on smooth and compact part of X. Assume the degree of

−(KX + D) is nonnegative on every compact component of X. Then KX + D is

n-semi-complementary for some n = 1, 2, 3, 4, 6.

We may induce semi-complements on a curve to complements on a log del Pezzo

surface.

Theorem 4.5. If (X,D) is a log del Pezzo surface which is not klt, then there exists

a regular complement i.e., n-complement for some n = 1, 2, 3, 4, or 6.

To prove this, we need a series of preparation. First we introduce dlt singularities,

which will be proven useful.
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Definition 4.6. Suppose (X,D) is a log pair. We say it has only divisorial log

terminal singularities or is dlt if there is a log resolution f : Y → X such that the

exceptional locus consists of only divisors, and when we write

KY + D̃ = f ∗(KX +D) +
∑
j

a(X,D;Ej)Ej

we have a(X,D;Ej) > −1 for all exceptional divisors Ej.

We have a useful technique called dlt modification.

Proposition 4.7. [16, 3.1.1]

Let (X,D) be a log pair of dimension ≤ 3, and (X,D) is lc. Then there exist

g : X ′ → X and a boundary D′ such that

i) KX′ +D′ = g∗(KX +D)

ii) (X ′, D′) is dlt

iii) X ′ is Q-factorial, and if dimX = 2, we may assume X ′ is smooth.

Remark 4.8. The proof involves the relative log minimal model program (LMMP)

[14, 3.31], which is a procedure described as follows:

The input is a dlt pair (Z,∆), with Z normal and Q-factorial, and a projecive

morphism a : Z → S.

The output is also a dlt pair (Z ′,∆′), with Z ′ normal and Q-factorial and bira-

tional over S and either

i) KZ′ +∆ is nef over S, or

ii) There is a Fano contraction Z ′ → W ,dimW < dimZ ′.

(Z,∆) and (Z ′,∆′) is connected by a series of divisorial contractions and flips,

whose inverses do not contract any divisors.

Proof. Take a log resolution f : Y → X. Write KY +DY = f ∗(KX +D)+E+−E−,

where DY = f−1
∗ DX , and E+,E− are effective exceptional divisors with no common

components. Then DY +E− is a boundary, hence (Y,DY +E−) is dlt. Apply LMMP

to (Y,DY +E−) over X, we arrive at g : X ′ → X, with X ′ normal Q-factorial , such

that (X ′, D′) is dlt, and KX +D′ is g-nef.

Set h : Y 99K X ′. We find KX′ +D′ = h∗(KY +DY + E−) = h∗(f
∗(KX +D) +

E+) = g∗(KX +D) + h∗E
+, and thus h∗E

+ is g-nef.
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Now g∗(h∗E
+) = 0, by the following lemma, we have −h∗E

+ ≥ 0. But it is clear

that h∗E
+ ≥ 0 , so h∗E

+ = 0. We get (i).

Now we consider the case dimX = 2, and show X ′ is smooth. If E+ ̸= 0, then

E+2 < 0 and there is an exceptional divisor E, with E+.E < 0, and E2 < 0. Then

KY + DY + E−.E = E+.E < 0, and thus KY .E < 0. We find E is a (-1)-curve,

and LMMP contracts such curves. The process then proceed with only smooth

surfaces.

Lemma 4.9. [14, 3.39]

Let g : X ′ → X be a proper birational morphism between normal varieties.

Suppose −B is a g-nef Q-Cartier Q-divisor. Then B ≥ 0 if and only if g∗B ≥ 0.

By the following observation, we find we may assume (X,D) is dlt in the theorem.

Proposition 4.10. Let f : X → Y be a birational map, and D be a subboundary.

KX +D is n-complementary implies KY + f(D) is n-complementary.

Proof. Pick f(D)+ = f(D+). We note that n(KX + D+) ∼ 0 implies n(KY +

f(D+)) ∼ 0. Thus KX +D+ = f ∗(KY + f(D+)).

Now we introduce another ingredient called connectedness lemma.

Lemma 4.11 (Connectedness Lemma). [16, 2.3.1]

Let f : X → Z be a contraction, i.e. f∗OX = OZ. Let (X,D) be a log pair such

that D ≥ 0 and −(KX +D) is f -big and f -nef. Let g : Y → X be a log resolution,

and write

KY = g∗(KX +D) + E+ − E−

where the coefficients of E− ≥ 1, the coefficients of E+ > −1, and E+, E− have no

common components.

Then Supp E− is connected in a neighborhood of any fiber of h = f ◦ g.

Proof. We find that ⌈E+⌉ − ⌊E−⌋ = KY − g∗(KX +D) + {−E+} + {E−} is h-nef

and h-big by assumption. By Kawamata-Viehweg vanishing theorem

R1h∗OY (
⌈
E+

⌉
−
⌊
E−⌋) = 0

From this we derive the surjectivity h∗OY (⌈E+⌉) → h∗O⌊E−⌋(⌈E+⌉).
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Since a component E in E+ is either g-exceptional, or the proper transform of

a component of D, and in the latter case, ⌈E+⌉ = 0, we must have ⌈E+⌉ is g-

exceptional, and h∗OY (⌈E+⌉) = OZ . Now near some fiber h−1(z) of z ∈ Z, we

have OZ,z = h∗OY (⌈E+⌉)(z) � h∗O⌊E−⌋(⌈E+⌉)(z). Nevertheless, h∗O⌊E−⌋(⌈E+⌉)(z)
can not be a direct sum of two proper submodules, and Supp E−=Supp ⌊E−⌋ is

connected near h−1(z).

The following application is important.

Definition 4.12. Let (X,D) be a log pair. Call a subvarietyW ⊂ X a log canonical

center, if there exist a log resolution p : Y → X and a divisor E (not necessarily

exceptional) such that a(X.D;E) ≤ −1, and p(E) = W . The union of all log

canonical centers is call the locus of log canonical singularities, denoted LCS(X,D).

Remark 4.13. In the definition of LCS, we can get all log canonical centers in one

log resolution.

Corollary 4.14. Under the same assumptions as the theorem, LCS(X,D) is con-

nected in a neighborhood of any fiber of f .

We also need some knowledge of adjunction and inversion of adjunction. [12,

Chapter 16]

Proposition 4.15. Let X be normal, S be a reduced subscheme of codimension 1,

and B be a Q-divisor. Assume (X,S+B) is log canonical in codimension two, then

there is a naturally defined effective Q-divisor DiffS(B) called the different such that

KX + S +B|S = KS + DiffS(B).

Remark 4.16. Rigorous definition of the different may be found in [12, Chapter 16].

There, the different is defined as a Q-Weil divisorial sheaf under very mild condition.

However, showing the different a Q-divisor, i.e., supporting outside the singularity

of S, in this context is by classification.

Proposition 4.17 (Inversion of adjunction). [12, 17.6]

Let (X,S + B) be a log pair, S be an irreducible divisor, and ⌊B⌋ = 0. Then

KX + S +B is plt near S if and only if KS + Diff(B) is klt.

25



Proof. Let g : Y → X be a log resolution, write KY = g∗(KX + S + B) + E+ −

E−, where the coefficients of E− ≥ 1, and the coefficients of E+ > −1. By the

Connectedness lemma with f : X → X the identity map, we have that E− is

connected near any fiber of g.

By adjunction, KS′ = g∗(KS +DiffS(B)) + (E+ − E ′)|S′ , where S ′ is the proper

transform of S, and E− = S ′ + E ′.

By definition, KX + S + B is plt ⇐⇒ E ′ = 0, and KS + DiffS(B) is klt ⇐⇒

E ′ ∩ S ′ = ∅. By connectedness of E− we see they are equivalent.

Theorem 4.5 is reduced to the following induction theorem.

Proposition 4.18. Let (X,D) be a log surface, f : X → Z ,and o ∈ Z. Denote

S = ⌊D⌋, and B = D − S. Suppose

i) KX +D is dlt

ii) −(KX +D) is f -nef and f -big

iii) S ̸= 0 near f−1(o)

If near f−1(o) ∩ S, there exists an n-semi-complement KS + DiffS(B)+ of KS +

DiffS(B), then near f−1(o), there exists an n-complement KX+S+B+of KX+S+B.

Moreover, DiffS(B)+ = DiffS(B
+) .

Proof. Firstly, by classification, S is simple normal crossing, and X is smooth near

the singularities of S. B does not pass through singularities of S, for otherwise it

would be not lc. By Szabo’s refinement of Hironaka’s resolution theorem, we may

take a log resolution g : Y → X, such that gS = g|S is an isomorphism. Write

KY + SY + A = g∗(KX + S + B), where SY is the proper transform of S. There

is a Q-divisor KS + DiffS(B) = KX + S + B|S [12, 16.6], and KSY
+ DiffSY

(A) =

g∗S(KS +DiffS(B)).

By assumption, there is an n-semi-complement KS+DiffS(B)+ of KS+DiffS(B),

and hence KSY
+DiffSY

(A)+ of KSY
+DiffSY

(A). That is, there exists

Θ ∈ |nKSY
−⌊(n+ 1)DiffSY

(A)⌋| such that nDiffSY
(A)+ = ⌊(n+ 1)DiffSY

(A)⌋+

Θ

Now −nKY − (n + 1)SY − ⌊(n+ 1)A⌋ = KY + ⌈−(n+ 1)(KY + SY + A)⌉, and

by Kawamata-Viehweg vanishing theorem, we have R1h∗(OY (−nKY − (n+ 1)SY −

⌊(n+ 1)A⌋) = 0, where h = f ◦ g. We get the surjectivity: H0(Y,OY (−nKY −

nSY − ⌊(n+ 1)A⌋) → H0(SY ,OSY
(−nKY − nSY − ⌊(n+ 1)A⌋).
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So there exists Ξ ∈ | − nKY − nSY − ⌊(n+ 1)A⌋ |, such that Ξ|SY
= Θ. Let

A+ = 1
n
(⌊(n+ 1)A⌋+Ξ), and B+ = g∗A

+. Then we get KX +S +B+|S = g∗(KY +

SY + A+)|S = KS + DiffS(B)+ is slc. Pushing forward n(KY + SY + A+) ∼ 0 by g

gives n(KX + S +B+) ∼ 0, in particular, KX + S +B ≡ 0.

It suffices to show (X,S+B+) is lc. Suppose not, then KX +S+B+α(B+−B)

is also not lc for α < 1 and near 1.

Now −{KX +S+B+α(B+−B)} = −(1−α)(KX +S+B)−α(KX +S+B+)

which is f -nef and f -big by assumption. We apply the connectedness lemma and

get LCS(X,S +B + α(B+ −B)) is connected near f−1(o).

On the other hand, we want to prove LCS(X,S + B + α(B+ − B)) = S near

f−1(o) ∩ S.

Near the singularities of S, we first note that B+ does not appear there by

construction, and (X,S + α(B+ − B)) = (X,S) is plt. Indeed, LCS(X,S + B +

α(B+ −B)) = S there.

Outside the singular locus of S, we have(S,DiffS(B)) is klt by adjunction and

(S,DiffS(B)+) is lc, so (S, αDiffS(B)+ + (1 − α)(DiffS(B)) is klt. By inversion of

adjunction, (X,S+B+α(B+−B)) is plt there. We see LCS(X,S+B+α(B+−B)) =

S near f−1(o) ∩ S.

By the connectedness we just proved, we find LCS(X,S +B + α(B+ −B)) = S

near f−1(o), which in turn implies (X,S+B+α(B+−B)) is plt, a contradiction.

Remark 4.19. Szabo’s theorems says for a variety X and a divisor D, one can get

a log resolution by repeatedly blowing up smooth centers, and unlike Hironaka’s

result, can leave where X is smooth and D is simple normal crossing unchanged.

Theorem 4.20. [16, 2.1.2 2.1.3]

Let X be a normal surface, and C be a reduced curve. KX + C is dlt near P .

Then near P ,(X,C) is analytically isomorphic to

a) (C2, {x = 0})/ 1
m
(1, a), with gcd(a,m) = 1 if (X,C) is plt. In this case C is

irreducible and smooth.

b) (C2, {xy = 0}, if (X,C) is not plt. In this case C has two smooth components,

and X is smooth at P .
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5 Weighted Complete Intersection

Weighted complete intersections provide many examples of del Pezzo surfaces

and surfaces of general type with cyclic quotient singularities. The materials in this

section can be found in [8]. In this section, let k be a field.

5.1 Weighted projective space

Definition 5.1. The weighted projective space P = P(a0, . . . , an) of weights a0, . . . , an
is Proj k[X0, . . . , Xn], where the grading is defined by degXi = ai, i = 0, 1, 2, . . . , n.

Denote by Ui the basic open set {Xi ̸= 0} ⊆ P. We have Ui = Spec{k[X0, . . . , Xn]Xi
}0,

where {}0 means taking the degree zero part.

Construct the following morphism:

p̃i : Spec k[y0, . . . , ŷi, . . . , yn, t,
1

t
] → Spec k[X0, . . . , Xn]Xi

,

defined by

Xl 7→

ylt
al , if i ̸= l

tai , if i = l

Taking degree 0 part induces the morphism

pi : Spec k[y0, . . . , ŷi, . . . , yn] → Spec {k[X0, . . . , Xn]Xi
}0.

We see pi is a quotient maps from An → Ui, and moreover we have the following.

Proposition 5.2. P(a0, . . . , an) is covered by the affine open set Ui = An/µai, with

action ζai ·(x0, . . . , x̂i, . . . , xn) 7→ (ζa0ai x0, . . . , ζ̂
ai
aixi, . . . , ζ

an
ai
xn). In other words, it has

exactly n+1 standard quotient singularities, each being of the type 1
ai
(a1, . . . , âi, . . . , an).

The quotient maps pi can be glued together in the following fashion.

Proposition 5.3. There is a natural map p : An+1\{0} → P

Proof. Plug in yl =
Yl

Yi
, we obtain p′i : Speck[Y0, . . . , Yn]Yi

→ Spec{k[X0, . . . , Xn]Xi
}0

defined by Xl 7→ Yl. Glue all the p′i together and we get p : An+1\{0} → P

Note that they are related by pi = p′i|{Yi=1}, and p′i can be represented by the

projection {Yi ̸= 0} ∼= {Yi = 1} × (A1\{0}) → {Yi = 1} followed by pi.
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Proposition 5.4. There is a covering q : Pn → P.

Proof. Define qi : Spec k[y0, . . . , ŷi, . . . , yn] → Spec {k[X0, . . . , Xn]Xi
}0, by Xl 7→yall , if i ̸= l

1, if i = l

.

Write An+1 = Spec k[Y0, . . . , Yn], and plug in yl = Yl/Yi for l ̸= i, and t = Yi. We

obtain q̃i : Spec k[Y0

Yi
, . . . , Ŷi

Yi
, . . . , Yn

Yi
] → Spec{k[X0, . . . , Xn]Xi

}0. These morphisms

can be glued together.

Remark 5.5. We can also define q to be the map between Proj schemes induced by

the graded injection: k[X0, . . . , Xn] → k[Y0, . . . , Yn], Xi 7→ Y ai
i . Note that the q

constructed above is different from p.

Definition 5.6. If gcd(a0, . . . , ai−1, ai+1, . . . , an) = 1 for i = 0, 1, . . . , n. We say

P(a0, . . . , an) is well formed.

Lemma 5.7. pi is étale in codimension 1 for all i if and only if P(a0, . . . , an) is well

formed.

Proof. We note 1
r
(a1, . . . , an) group action has no divisor fixed by a non-identity

element if and only if gcd(r, a1, . . . , âi, . . . , an) = 1 for i = 1, 2, . . . , n.

Furthermore, examining carefully, we see that if gcd(ai0 , ai1 . . . , ais) = d ̸= 1,

then for the action of µai0
on the basic open set Ui0 , an order d element fixes the

locus {Xj1 = . . . = Xjn−s = 0}, where {i0, i1, . . . , is, j1, . . . , jn−s} = {0, 1, . . . , n}.

Such loci are the only possible places that can be singular, called the singular strata.

Denote by U0 the complement of all singular strata in P(a0, . . . , an). We find U0

is covered by all Ui0,...,is = {Xi0Xi1 . . . Xis ̸= 0} with gcd(ai0 , . . . ais) = 1, and p :

p−1(Ui0,...,is) → Ui0,...,is is isomorphic to the first projection Ui0,...,is×(A1\0) → Ui0,...,is

albeit not canonically. Indeed, p is induced by the inclusion {k[X0, . . . Xn]Xi0
Xi1

...Xis
}0 →

k[X0, . . . Xn]Xi0
Xi1

...Xis
= {k[X0, . . . Xn]Xi0

Xi1
...Xis

}0[T, 1
T
], where T =

∏s
l=0X

vil
il
,

provided we fix vil ∈ Z,
∑s

l=0 vilai1 = 1. Note that if we choose v differently, T will

differ by a multiple of a unit in {k[X0, . . . Xn]Xi0
Xi1

...Xis
}0. We see p−1(U0) → U0 is

a Gm-torsor, for Gm = Spec k[u, 1
u
] acts naturally by T 7→ uT .

Lemma 5.8. Any P(a0, . . . , an) is isomorphic to some well formed P(a′0, . . . , a′n).
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Proof. We only need the following observation P(a0, a1 . . . , an) ∼= P(a0, qa1, . . . , qan)

for any q ∈ N, (q, a0) = 1.

5.2 Weighted complete intersection

A degree d form fd in k[X0, . . . , Xn] is fd =
∑

CαX
α with

∑n
i=0 aiαi = d. A

general form fd may be assumed such that all Cα ̸= 0. In a weighted projective space

P = P(a0, . . . , an), we may define a subvariety X by homogeneous ideal generated

by such forms. We note that the above constructed pi can be restricted to X.

Definition 5.9.

If X ⊆ P(a0, . . . , an) a subvariety, such that p−1(X) ∈ An+1\{0} is smooth, call

X quasi-smooth.

If X is defined by c = codim X forms in k[X0, . . . , Xn], call X a weighted com-

plete intersection. Denoted byXd1,d2,...,dc if the defining forms f1, . . . , fc are of degrees

d1, d2, . . . , dc. In particular, when c = 1, Xd is called a weighted hypersurface. We

set k[x0, . . . , xn] = k[X0, . . . , Xn]/(f1, . . . , fc).

Suppose X is a weighted complete intersection of codimension c, X is called well

formed if P(a0, . . . , an) is well formed, and X contains no codimension c+1 singular

stratum.

Proposition 5.10. If X is well formed, then pi|p−1
i (X∩Ui)

is étale in codimension 1

.

Proof. This follows from that on each affine open set Ui, the action of µai is free in

codimension 1.

From this we see if X is well formed and quasi-smooth, it has only cyclic quotient

singularities. In this case, we have the following formula for the canonical divisor.

Proposition 5.11. If X = Xd1,d2,...,dc is well formed and quasi-smooth, then KX =

O(α), where α =
∑c

j=1 dj −
∑n

i=0 ai is called the amplitude.

This proposition is proved by calculating the Ext definition of the dualizing sheaf

in [7]. Here we provide a proof dealing directly with differential forms.
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Proof. Let V 0 = U0∩X, covered by Vi0,...,ir = Ui0,...,ir ∩X with gcd(ai0 , . . . , air) = 1.

By assumption, codim X\V 0 > 1. Thus it suffices to consider KV 0 . We see as before

that p−1(Vi0,...,ir) → Vi0,...,ir is induced by k[Vi0,...,ir ] → k[Vi0,...,ir ][T,
1
T
], where T may

differ by a multiple of k[Vi0,...,ir ]
×. We proceed as follows.

i) For a line bundle L over V 0, and p∗L is trivial in p−1(V ). Then L = O(m)

for some m ∈ Z. Indeed, suppose L is defined by the transition functions gµν over

the open cover {Vµ}, a refinement of {Vi0,...,ir}. We may write gµν = hµ/hν for

hµ ∈ (k[Vµ][Tµ,
1
Tµ
])× since p∗L is trivial. Now that hµ is a monomial h̃µT

−m
µ , where

m is common for all µ. In this case L = O(m).

ii) We have the following nowhere vanishing regular differential (n− c+1)-form

on p−1(V ), which is smooth.

ω0 = sgn

 0 . . . n− c n− c+ 1 . . . n

i0 . . . in−c j1 . . . jc

 dXi0 ∧ dXi1 ∧ . . . ∧ dXin−c

∂(f1,...fc)
∂(Xj1

,...Xjc)

On each Vµ, denote by z1, . . . , zn−c the regular system of parameters. We may

write ω0 = hµT
−α
µ dz1 ∧ dz2 ∧ . . . ∧ dzn−c ∧ dt

t
with hµ ∈ k[Vµ]

×, and KX is defined

by the cocycle gµν = hµT
−α
µ /hνT

−α
ν ∈ k[Vµ ∩ Vν ]

×. Therefore KX = OX(α).

Consider a weighted hypersurface Xd. Note that all degree d forms form a linear

system L(d) in An+1, and by Bertini theorem, for general fd, singularities of p−1(Xd)

only lie in the base locus of L(d). Since L(d) is spanned by monomials, the base locus

B is a union of coordinate k-planes Ei1i2...in−k
= {Xi1 = Xi2 = . . . = Xin−k

= 0}.

We then require the gradient ∇fd is nowhere vanishing on these k-planes except at

origin. Write this condition explicitly, we have the following.

Proposition 5.12. Let Xd ⊆ P(a0, a1, a2, a3) be a general degree d hypersurface.

It is well formed if and only if gcd(a0, . . . , âi, . . . , a3) = 1 for all i, and gcd(ai, aj)|d

for all i ̸= j

Suppose d > a0, . . . , a3. Then X is quasi-smooth if and only if the following

conditions are satisfied.

i) For all i, there exists j such that there is a monomial Xmi
i Xj in L(d).

ii) For all i ̸= j, there is a monomial Xmi
i X

mj

j in L(d), or there are monomials

Xmi
i X

mj

j Xk and X
m′

i
i X

m′
j

j Xl in L(d), where {i, j, k, l} = {0, 1, 2, 3}.

iii) For all i, there exists a monomial not involving Xi in L(d).
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Proof. We keep the notation {i, j, k, l} = {0, 1, 2, 3}.

i) The existence of Xm
i is equivalent to Ejkl * B. If not, then the existence of

Xm
i Xj with j ̸= i is equivalent to that ∂jfd|Ejkl

is nowhere vanishing.

ii) The existence of Xmi
i X

mj

j is equivalent to Ekl * B. If not, then the existence

of Xmi
i X

mj

j Xk and X
m′

i
i X

m′
j

j Xl is equivalent to that (∂kfd, ∂lfd)|Ekl
does not vanish

unless Xi = Xj = 0. which is exclude by i).

iii) The existence of monomial not involving Xi is equivalent to Ei * B.

In [4] weighted hypersurfaces that are del Pezzo are classified. As an illustration,

we show general weighted hypersurfaces in the Table 1. has n-complement.

For convenience, we denote the variables P(a0a1, a2, a3) = Proj C[w, x, y, z]. De-

note U0 = {w ̸= 0}, p0 : V0 = {w = 1} ⊆ (An+1\0) → U0 , and similarly for x, y, z.

We also adopt the coefficient convention: e.g., a general equation F = y3 + x2z

means F = c1y
3 + c2x

2z for general c1, c2.

Example 5.13. Let X = X12n−9 ⊆ P(1, 3n − 2, 4n − 3, 6n − 5), α = −n. It has a

3-complement.

Proof. The general equation for X is F = y3 + x2z+wz2 + higher terms of w. Pick

a section w2x of OX(−3KX), and let D be this divisor. We show that (X, 1
3
D) is lc.

Recall wellformedness of X implies the covering map pi is finite étale in codi-

mension 1 for all i. By Lemma 2.23, it suffices to prove the preimage (X̃i,
1
3
D̃i) of

(X, 1
3
D)|Ui

is lc for all i. Also, by quasi-smoothness of X, X̃i is smooth.

Near a smooth point P of the reduced part of D̃i, (X̃i,
1
3
D̃i) is analytically iso-

morphic to (A2, cL), where L is an axis, c = 1
3
or 2

3
. It is lc here.

The only singular point is P = (0, 0, 0, 1) of D̃3 in V3, where the tangent plane

TPX is {w = 0}. We project (X̃3,
1
3
D̃3) to TPX. Since the projection is étale near

P . It suffices to prove that (A2, 1
3
(2C1 + C2)) is lc. where C1 = {y3 + x2 = 0} =

X ∩ {w = 0}, C2 = {x = 0}. This can be shown by standard blowup resolution

calculation.

Let f : X̃ → X be the minimal log resolution of (A2, C1 + C2), which can be

obtained by repeatedly blowing up singular points. Denote by C̃1, C̃2 the proper

transforms of C1, C2 respectively, and Ej be the exceptional divisors for j = 1, 2, 3.
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Then
KX̃ = f ∗KX + E1 + 2E2 + 4E3;

f ∗C1 = C̃1 + 2E1 + 3E2 + 6E3;

f ∗C2 = C̃2 + E1 + 2E2 + 3E3.

We find that lct(2C1 + C2) = min{2
5
, 3
8
, 5
15
} = 1

3
. Therefore, (A2, 1

3
(2C1 + C2)) is

lc.

Example 5.14. Let X = X126n−81 ⊆ P(7, 28n − 18, 42n − 27, 63n − 44), α =

−(7n− 1). It has a 4-complement.

Proof. The general equation is F = y3 + yx3 + wz3 + higher terms of w. Pick a

section w2x of OX(−4KX), and let D be this divisor. We show that (X, 1
4
D) is lc.

The only singular point is P = (0, 0, 0, 1) of D̃3 in V3. We project to TPX = {w =

0}. Then similar to previous example, it is reduced to (A2, 1
4
(2C1+C2)) is lc, where

C1 = {y3 + yx3 = 0} and C2 = {x = 0}. This is also shown by similar calculation.

For convenience, denote C1 = C3 + C4 with C3 = {y = 0} and C4 = {y2 + x3 = 0}.

Let f : X̃ → X be the minimal log resolution of (A2, C2 + C3 + C4). Denote by

C̃2, C̃3, C̃4 the proper transforms of C2, C3, C4 respectively, and Ej be the exceptional

divisors for j = 1, 2, 3. Then

KX̃ = f ∗KX + E1 + 2E2 + 4E3;

f ∗C2 = C̃2 + E1 + 2E2 + 3E3;

f ∗C3 = C̃3 + E1 + E2 + 2E3;

f ∗C4 = C̃4 + 2E1 + 3E2 + 6E3.

We find that lct(C2+2C3+2C4) = min{2
7
, 3
10
, 5
19
} > 1

4
. Therefore, (A2, 1

4
(2C1+C2))

is lc.

Example 5.15. Let X = X24n−12 ⊆ P(2, 6n− 3, 8n− 4, 12n− 7), α = −2n. It has

a 4-complement.

Proof. The general equation is F = x4+y3+wz2+higher terms of w. Pick a section

w2y of OX(−4KX), and let D be this divisor. We show that (X, 1
4
D) is lc.

The only singular point is P = (0, 0, 0, 1) of D̃3 in V3. We project to TPX =

{w = 0}. Then it is reduced to (A2, 1
4
(2C1 + C2)) is lc, where C1 = {y3 + x4 = 0}

and C2 = {y = 0}. We calculate as follows.
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Let f : X̃ → X be the minimal log resolution of (A2, C1+C2). Denote by C̃1, C̃2

the proper transforms of C1, C2 respectively, and Ej be the exceptional divisors for

j = 1, 2, 3, 4. Then

KX̃ = f ∗KX + E1 + 2E2 + 4E3 + 6E4;

f ∗C1 = C̃1 + 3E1 + 4E2 + 8E3 + 12E4;

f ∗C2 = C̃2 + E1 + 2E2 + 3E3 + 4E4.

We find that lct(2C1 +C2) = min{2
7
, 3
10
, 5
19
, 7
28
} = 1

4
. Therefore, (A2, 1

4
(2C1 +C2)) is

lc.

Example 5.16. Let X = X8n+4 ⊆ P(2, 2n + 1, 2n + 1, 4n + 1), α = −1. It has a

2-complement.

Proof. The general equation is F = f4(x, y) + wz2 + higher terms of w, where f4 is

a homogeneous polynomial of degree 4. Pick a section w of OX(−2KX), and let D

be this divisor. We show that (X, 1
2
D) is lc.

The only singular point is P = (0, 0, 0, 1) of D̃3 in V3. We project to TPX =

{w = 0}. Then it is reduced to (A2, 1
4
(L1 + L2 + L3 + L4)) is lc, where Li is a line

through the origin for i = 1, 2, 3, 4. For general F , Li are distinct. We calculate as

follows.

Let f : X̃ → X be the minimal log resolution of (A2, L1+L2+L3+L4). Denote

by L̃i the proper transform of Li for i = 1, 2, 3, 4, and E be the exceptional divisor.

KX̃ = f ∗KX + E;

f ∗Li = L̃i + E.

We find that lct(L1+L2+L3+L4) =
2
4
= 1

2
. Therefore, (A2, 1

4
(L1+L2+L3+L4))

is lc.

The followings are some examples from Table 2 of [4]. These examples are not

n-complementary for n ≤ 6 since | − nKX | = ∅.

Example 5.17. LetX = X256 ⊆ P(13, 35, 81, 128), α = −1. It has a 13-complement.

Proof. The general equation is F = z2 + x5y + wy3 + higher terms of w. Pick a

section w of OX(−13KX), and let D be this divisor. We show that (X, 1
13
D) is lc.

The only singular point is P = (0, 0, 1, 0) of D̃2 in V2. We project to TPX =

{w = 0}. Then it is reduced to (A2, 1
13
C) is lc, where C = {z2 + x5 = 0}.
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Let f : X̃ → X be the minimal log resolution of (A2, C1 +C2). Denote by C̃ the

proper transform of C, and Ej be the exceptional divisors for j = 1, 2, 3, 4. Then

KX̃ = f ∗KX + E1 + 2E2 + 3E3 + 6E4;

f ∗C = C̃ + 2E1 + 4E2 + 5E3 + 10E4.

We find that lct(C) = min{2
2
, 3
4
, 4
5
, 7
10
} = 7

10
. Therefore, (A2, 7

10
C) and hence

(A2, 1
13
C) is lc.

Example 5.18. Let X = X76 ⊆ P(11, 13, 21, 38), α = −7. It has a 11-complement.

Proof. The general equation is F = z2 + xy3 + wx5 + higher terms of w. Pick a

section w7 of OX(−11KX), and let D be this divisor. We show that (X, 1
11
D) is lc.

The only singular point is P = (0, 1, 0, 0) of D̃1 in V1. We project to TPX =

{w = 0}. Then it is reduced to (A2, 7
11
C) is lc, where C = {z3 + y2 = 0}. It is

well-known that lct(C1) =
5
6
> 7

11
. We have (A2, 7

11
C) is indeed lc.

Remark 5.19. The weighted complete intersectionX6,6 ⊆ P(2, 2, 3, 3, 3) is an example

of well formed quasi-smooth del Pezzo surface.

6 Kähler-Einstein Metric

In Riemannian geometry, it has been a fundamental problem to find nice metrics

on a manifold. In Kähler geometry, similarly, it has been an active research prob-

lem to determine the existence of Kähler-Einstein metrics. We recall the following

definitions.

Definition 6.1.

i) Let (X, h) be a Hermitian complex manifold, Define g = Reh and ω = -Im h.

If ω is a closed form, then call ω a Kähler form, g a Kähler metric, and X a Kähler

manifold.

ii) Let (X, g) be a Riemannian manifold. If R = kg, where R is the Ricci tensor,

and k ∈ R a constant then call g an Einstein metric, and X an Einstein manifold.

iii) When (X, h) is a Hermitian complex manifold such that g is both Kähler

metric and an Einstein metric, g is called a Kähler-Einstein metric.
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The problem has been solved for X with c1(X) < 0 (resp. = 0). In this case, X

always has a Kähler-Einstein metric, which is known as Aubin-Yau theorem (resp.

Calabi-Yau theorem). However, for c1(X) > 0, i.e., the Fano case, X does not

always have a Kähler-Einstein metric. Thus, it remains an interesting question. For

smooth surfaces, Tian solved this problem completely.

Theorem 6.2. [21] A smooth del Pezzo surface X has a Kähler-Einstein metric if

and only if X is not P2 blown up 1 or 2 points.

Consequently, Matsushima’s necessary condition for existence of Kähler-Einstein

metric, i.e., the Lie algebra of Aut(X) is reductive, is also sufficient for surfaces. In

the proof of the theorem α-invariant and its refinements are defined. Here we give

the definition of α-invariant for example.

Definition 6.3. For an n-dimensional smooth projective manifold X with ample

line bundle L define

α(X,L) = sup{α > 0 | ∃C > 0 such thatˆ
X

e−α(φ−supX φ)ωn ≤ C, ∀φ ∈ C∞(X,R), ω + i∂∂̄φ > 0}

In particular, if X is Fano, we define α(X) = α(X,−KX).

There is an algebraic formula for α(X,L) involving log canonical threshold due

to Demailly.(cf. [21, Appendix])

Theorem 6.4. α(X,L) = infm∈N infD∈|mL| lct(X, 1
m
D)

With α-invariants, there is a sufficient condition for existence of Kähler-Einstein

metrics.

Theorem 6.5. [20, Theorem 2.1.] If α(X) > n
n+1

, then X has a Kähler-Einstein

metric.(cf. [21, 3.2])

For orbifolds, there is a similar result.

Theorem 6.6. [3] A Fano orbifold X of dimension n has a Kähler-Einstein metric

if

α(X) := inf
n

inf
D∈|−mKX |

lct(X,
1

n
D) >

n

n+ 1
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It is not easy to compute the global log canonical threshold α(X) 1, for it involves

all divisors Q-equivalent to −KX .

Example 6.7. α(P2) = 1
3
, α(P1 × P1) = 1

2
. We note that if X is smooth at P ,

but (X,D) is not lc at P then multPD > 1. However, P2 and P1 × P1 do have

Kähler-Einstein metric, namely, the Fubini-Study metric.

In [2], Cheltsov proved that for a smooth degree d hypersurface X in Pn, and

B ≡ rH, where H is the hyperplane section. Then there is a lower bound for log

canonical threshold:

lct(X,B) ≥ min{n− 1

rd
,
1

r
}

In particular, if X is a cubic surface in P3, we have α(X) ≥ 2
3
.

7 Euler Characteristics

7.1 Singular Riemann-Roch Theorem

The Riemann-Roch formula plays the pivotal role in the study of geometry of

nonsingular varieties. It is desirable to have a similar formula at least for mildly

singular surface. For surfaces with only quotient singularities, there is a singular

Riemann-Roch formula due to Reid (cf. [18]). To state the formula, we need to

introduce Dedekind sums first.

Definition 7.1 (Dedekind Sum). For a quotient singularity 1
r
(a, b), define

σj = σj(
1

r
(a, b)) =

∑
ζ∈µr\{1}

ζj

(1− ζa)(1− ζb)

Theorem 7.2 (Singular Riemann-Roch Theorem). [18]

Let X be a surface with only cyclic quotient singularities, and D be a Weil divisor.

Then

χ(X,D) = χ(X,OX) +
1

2
D.(D −KX) +

∑
P∈X

cP (D)

where cP (D) = 1
r
(σj − σ0) for quotient singularity P of type 1

r
(a, b) and j is the

weight of cyclic group action on the sheaf OX(D).
1Many papers including [3] use the notation “lct(X)”. However, it seems to cause confusion

here, so we use “α(X)” instead.
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In particular,

χ(X,−mKX) = χ(X,OX) +
m(m+ 1)

2
K2

X +
∑
P∈X

cP (−mKX)

where cp(−mKX) =
1
r
(σ−m(a+b) − σ0).

We set τm := (σ(m+1)j − σmj)/r and δm := τm+1 − τm. We have τm = −τ−m (see

below). For simplicity, we denote

κm := χ(X,−mKX),

and the difference and the second difference are given by

∆κm := κm+1 − κm

= (m+ 1)K2
X +

∑
P∈X τm+1;

∆2κm := ∆κm+1 −∆κm

= K2
X +

∑
P∈X δm+1.

Given a quotient singularity 1
r
(a, b), we let α (resp. ᾱ) be the smallest positive

integer such that aα ≡ b (mod r) (resp. (bᾱ ≡ a(mod r)).

Lemma 7.3. Keep the notation as above.

i) τm = −τ−m, and δm = δ−(m+1).

ii) τm = (1 +Rm)−mα+ᾱ+2
r

, where

Rm =
1

2
{
⌊
m(1 + α)

r

⌋
+

⌊
m(1 + α)− 1

r

⌋
+

⌊
m(1 + ᾱ)

r

⌋
+

⌊
m(1 + ᾱ)− 1

r

⌋
}.

iii) δm = Zm − α+ᾱ+2
r

, where

Zm(
1

r
(a, b)) = #{0 ≤ j ≤ α | ja ≡ −m(a+ b)(mod r)}+

#{1 ≤ j ≤ ᾱ + 1 | jb ≡ −m(a+ b)(mod r)}

= #{0 ≤ j ≤ α | ja ≡ (m+ 1)(a+ b)(mod r)}+

#{1 ≤ j ≤ ᾱ + 1 | jb ≡ (m+ 1)(a+ b)(mod r)}.

Zm ∈ {0, 1, 2}. Moreover, Rm+1 −Rm = Zm+1, Rm ∈ Z.

Proof. i) By definition we have

rτm =
∑

ζ
ζa+b−1

(1−ζa)(1−ζb)
· ζm(a+b)

=
∑

ζ
ζ−(a+b)−1

(1−ζ−a)(1−ζ−b)
· ζ−m(a+b)

=
∑

ζ
1−ζ(a+b)

(1−ζa)(1−ζb)
· ζ−m(a+b) = −rτ−m.
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ii) Denote a′, b′ the least positive integer such that aa′ ≡ bb′ ≡ 1(mod r). Then

rτm =
∑

ζ
ζa+b−1

(1−ζa)(1−ζb)
· ζm(a+b)

= −1
2

∑
ζ{

ζm(a+b)(1+ζa)
1−ζa

+ ζm(a+b)(1+ζb)
1−ζb

}

= −1
2
{
∑

ζ
ζm(a+b)a′ (1+ζ)

1−ζ
+
∑

ζ
ζm(a+b)b′ (1+ζ)

1−ζ
}

= (1− r)−m(a+ b)(a′ + b′)− 1− rR′
m,

where R′
m = 1

2
{
⌊
−m(a+b)a′

r

⌋
+
⌊
−m(a+b)a′+1

r

⌋
+
⌊
−m(a+b)b′

r

⌋
+
⌊
−m(a+b)b′+1

r

⌋
}.

We may assume a = a′ = 1,and b = α, b′ = ᾱ. Let bb′ = rk + 1. Then

rτm = −r −m(2 + b+ b′ + kr)− rR′
m,

R′
m = 1

2
{
⌊
−m(1+b)

r

⌋
+
⌊
−m(1+b)+1

r

⌋
+
⌊
−m(1+b)b′

r

⌋
+
⌊
−m1+b)b′+1

r

⌋
}

= 1
2
{
⌊
−m(1+b)

r

⌋
+
⌊
−m(1+b)+1

r

⌋
+
⌊
−m(1+b′)

r

⌋
+
⌊
−m(1+b′)+1

r

⌋
} −mk.

So we may rewrite rτm = −m(2 + b+ b′)− r(1 +Rm), where

Rm =
1

2
{
⌊
−m(1 + b)

r

⌋
+

⌊
−m(1 + b) + 1

r

⌋
+

⌊
−m(1 + b′)

r

⌋
+

⌊
−m(1 + b′) + 1

r

⌋
}.

Also note τm = −τ−m, we find Rm +R−m = −2. Write

Rm = R−m =
1

2
{
⌊
m(1 + b)

r

⌋
+

⌊
m(1 + b)− 1

r

⌋
+

⌊
m(1 + b′)

r

⌋
+

⌊
m(1 + b′)− 1

r

⌋
},

and rτm = −m(2 + b+ b′) + r(1 +Rm).

iii) rδm =
∑

ζ

(
ζa+b−1
ζa−1

)(
ζa+b−1
ζb−1

)
ζm(a+b)

=
∑

ζ(1 + ζa + ζ2a . . .+ ζαa)(1 + ζb + ζ2b . . .+ ζ ᾱb)ζm(a+b)

=
∑

ζ(1 + ζa + ζ2a . . .+ ζ(α−1)a)(1 + ζb + ζ2b . . .+ ζ(ᾱ−1)b)ζm(a+b)

+
∑

ζ(1 + ζa + ζ2a . . .+ ζ(α−1)a)ζm(a+b)+a

+ (1 + ζb + ζ2b . . .+ ζ(α
−1−1)b)ζm(a+b)+b +

∑
ζ ζ

(m+1)(a+b)

Now (1 + ζa + ζ2a . . .+ ζ(α−1)a)(1 + ζb + ζ2b . . .+ ζ(ᾱ−1)b) = 1.

Also note
∑

ζ ζ
s = rz − 1, where z =

0 , if s ̸ |r

1 , if s|r
.

So rδm =
∑

ζ f(ζ)ζ
m(a+b), where

f(x) = 1 + (xa + x2a + . . .+ xαa) + (xb + x2b + . . .+ xᾱb) + xa+b

We have rδm = rZm − (α + ᾱ + 2). The latter formula is obtained from Zm =

Z−(m+1).

Remark 7.4. From τm = −τ−m, we see directly χ(X,mKX) = χ(X, (1−m)KX) for

all m. This can be also derived from Serre duality as in [14, 5.27], which states for an
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klt log pair (X,∆), and D any Q-Cartier Weil divisor, X is CM and H i(X,OX(D))

is dual to Hn−i(X,ωX(−D)) for all i.

For m = 0, we have

Z0(P ) =

1, if P is not a canonical singularity;

2, if P is a canonical singularity.

. From this we see canonical singularities do not affect Euler characteristics, and

can be considered negligible afterward. Since τ0 = 0, κ0−κ−1 = ∆κ−1 = 0, δ0 = τ1,

we have

∆κ0 = K2
X +

∑
P∈X

δ0(P ) = K2
X +

∑
P is not canoncial

1

r
(1− α− ᾱ− 2).

7.2 Euler characteristics under L-blowups

Given a surface X with cyclic quotient singularities, we let Y → X be its L-

blowup. The purpose of this subsection is to compare Euler characteristics of these

two surfaces.

Theorem 7.5. Suppose f : Y → X is birational, both have only rational singularities

. Then χ0(Y )=χ0(X).

Proof. Take a resolution g : Z → Y , denote h = f ◦g, then Rig∗OZ = 0, Rih∗OZ = 0

for all i > 0

By Larey spectral sequence, Rpf∗R
qg∗OZ ⇒ Rnh∗OZ , from this we seeRif∗OY =

0, for all i > 0

Under general birational morphisms, κ1 may be changed. We prove that κ1 is

preserved by L-blowups.

Theorem 7.6 (= Proposition 1.2). If f : Y → X is an L-blowup, then χ(Y,−KY ) =

χ(X,−KX)

Proof. By induction, it suffices to prove this for a simple L-blowup. We thus assume

that X has singularity P of type 1
r
(1, b) and π : Y → X is a simple L-blowup so

that Y has two singularities Q1 and Q2 of types 1
a+1

(1, 1) and 1
b+c

(1, c) respectively,

where c = ab− r.
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The following calculation uses the identities of Hirzebruch-Jung continued frac-

tions, as in Remark 2.41:

Denote
r = ⟨un, . . . , u1⟩ , a = un,

b = ⟨un−1, . . . , u1⟩ , c = ⟨un−2, . . . , u1⟩ ,

b = ⟨un, . . . , u2⟩ , k = ⟨un−1, . . . , u2⟩ < b,

k1 = ⟨un−2, . . . , u2⟩ < c.

Then we have
c = ab− r, bb̄ = 1 + rk,

b̄ = ak − k1, ck = 1 + bk1,

Let c′ is the least positive integer such that cc′ ≡ 1 (mod b + c). Then by

b + c = ⟨un−1 + 1, an−2, . . . , u1⟩, (k1 + k)c = 1 + k1(b + c). We find c′ = k1 + k.

Combining these, we obtain

bb̄+ b̄c−c′r = (1+rk)+(ak−k1)c−r(k+k1) = 1−rk1−ck1+a(1+bk1) = 1+a. (†)

By singular Riemann-Roch:

∆κ0(Y ) = K2
Y + δ0(

1

a+ 1
(1, 1)) + δ0(

1

b+ c
(1, c)) +

∑
P ′ ̸=Q1,Q2

δ0(P
′)

∆κ0(X) = K2
X + δ0(

1

r
(1, b)) +

∑
P ′ ̸=P

δ0(P
′)

From this we see

κ1(Y )− κ1(X) = ∆κ0(Y )−∆κ0(X)

= K2
Y −K2

X + 1 +
b+ b̄+ 2

r
− c+ c′ + 2

b+ c
− 4

a+ 1
.

By Proposition 2.36,

K2
Y −K2

X = − r

(a+ 1)(b+ c)
(
a+ 1 + b+ c

r
− 1)2,

and it is reduced to prove

(a+1+b+c−r)2 = (a+1)[(b+c)r+(b+c)(b+ b̄+2)−r(c+c′+2)]−4(b+c)r. (‡)

Using (†) and b+ c+ r = ab+ b,

LHS of (‡) = (a+ 1)2 + (b+ c+ r)2 + 2(a+ 1)(b+ c− r)− 4(b+ c)r

= (a+ 1)2 + (b+ c+ r)(ba+ b) + 2(a+ 1)(b+ c− r)− 4(b+ c)r

= (a+ 1)(a+ 1 + bc+ br + b2 + 2b+ 2c− 2r)− 4(b+ c)r

= RHS of (‡)
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Theorem 7.7. Suppose X has a 1
r
(1, b) point, and we blow up X along 1

r
(s, t) to

get Y . If
m

m+ 1
<

s+ t

r
<

m+ 1

m
,

then κi,X = κi,Y for i = 1, 2, . . . ,m. In particular, if s+ t = r, then κi,X = κi,Y

for all i.

Proof. By Proposition 2.36 KY = π∗KX + ( s+t
r

− 1)E.

We claim that (Y, cE) is klt for 0 ≤ c < 1. By construction, it suffices to consider

the toric singularity without loss of generality.

Let Z be the toric variety defined by a lattice N = Ze1+Ze2+Z· 1
r
(1, b), the cone

σ be the first quadrant, and E be the divisor corresponding to the x-axis. Recall

the minimal resolution f : W → Z is obtained from blowing up along all vertices

of the Newton polytope P = convex hull of N ∩ σ. We denote those vertices by

(0, 1) = P0 = (a0, b0), P1 = (a1, b1), . . . , Pk = (ak, bk), (1, 0) = Pk+1 = (ak+1, bk+1),

with 0 < a1 < . . . < ak < 1, and 1 > b1 > . . . > bk > 0. Then

KW = f ∗KZ +
k∑

i=1

(ai + bi − 1)Ei

f ∗E = Ẽ +
k∑

i=1

aiEi

where Ei is the exceptional divisor corresponding to Pi. Since 0 < ai+bi−1−cai < 1,

(Z, cE) is klt.

If s + t ≤ r, write −mKY = KY − (m + 1)KY ≡f KY + ((m + 1)(1 − s+t
r
)E ,

then by Kawamata-Viehweg vanishing theorem, we have Rif∗OY (−mKY ) = 0 for

i > 0 if (m + 1)(1 − s+t
r
) < 1. In this case, f∗OY (−mKY ) = OX(−mKX) We find

χ(Y,−mKY ) = χ(X,−mKX).

If s + t ≥ r, write(m + 1)KY = KY + mKY ≡f KY + m( s+t
r

− 1)E) , then by

Kawamata-Viehweg vanishing theorem, we have Rif∗OY ((m+ 1)KY ) = 0 for i > 0

if m( s+t
r

− 1) < 1. In this case, f∗OY ((m + 1)KY ) = OX((m + 1)KX) We find

χ(Y, (m + 1)KY ) = χ(X, (m + 1)KX), and hence χ(Y,−mKY ) = χ(X,−mKX) by

Serre duality.
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In the proof we used the following lemma. It is not a difficult result, but we do

not know a proper reference. We include the proof for completeness.

Lemma 7.8. Let f : Y → X be a birational morphism between normal varieties.

Suppose KX is Q-Cartier, we write KY ∼Q f ∗KX + E, where E =
∑

aEi
Ei is a

Q-divisor. Suppose E ≥ 0 (resp. −E ≥ 0). Then f∗OY (mKY ) = OX(mKX), for

m ≥ 0 (resp. m ≤ 0)

Proof. We may assume X is affine. We note that since X, Y are normal, there is

U ⊆ X such that X\U has codimension at least two, and f |f−1(U) is an isomor-

phism. There is an natural inclusion H0(Y,OY (mKY )) ↩→ H0(U,OU(mKU)) =

H0(X,OX(mKX)) as subspaces of the space of rational sections of ω⊗m
κ/k , where κ is

the common function field of X and Y .

To prove equality, take a regular section ω ∈ H0(X,OX(mKX)), and prove it in

H0(Y,OY (mKY )). We focus on an exceptional prime divisor E0 at a time. Now we

may assume Y is affine, and E0 corresponds to a height 1 prime p. We pick ω0 as in

the prove of Hurwitz formula. Then ω is regular at E0 if and only if ordp(ω/ω0) ≥ 0.

Suppose r ∈ N such that rKX is Cartier, and rKY ∼ f ∗rKX + rE. We see

ω⊗r ∈ H0(X,OX(rmKX)) and thus ordp(ω
⊗r/ω⊗r

0 ) ≥ mraE0 , i.e., ordp(ω/ω0) ≥

maE0 . From this we conclude that if aE0 ≥ 0 (resp. aE0 ≤ 0), then ω is regular at

E0 if m ≥ 0 (resp. m ≤ 0), and hence the proof.

8 Nonvanishing

Now let X be a surface with only quotient singularities {1
r
(1, 1)}. It is clear that

Zm(
1
r
(1, 1)) =


1, if m ≡ 0, r

2
, r
2
− 1,−1(mod r)

2, if m ≡ r−1
2
(modr)

0, otherwise
Let cr be the number of singularities of type 1

r
(1, 1). From the singular Riemann-

Roch theorem, we calculate the difference and second differences of κ:

∆κ0 = K2
X +

∑
r

cr(1−
4

r
)

∆2κm = K2
X +

∑
r

cr(Zm+1(
1

r
(1, 1))− 4

r
)
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Written explicitly,

∆2κ0 = K2
X + 2c3 + c4 −

∑
r

cr
4

r

∆2κ1 = K2
X + c3 + c4 + 2c5 + c6 −

∑
r

cr
4

r

∆2κ2 = K2
X + c3 + c4 + c6 + 2c7 + c8 −

∑
r

cr
4

r

∆2κ3 = K2
X + 2c3 + c4 + c5 + c8 + 2c9 + c10 −

∑
r

cr
4

r
(*)

and so on. Combining the above formulae, we find

−2κ0 + κ1 + κ2 + κ3 − κ4 = 2∆κ0 −∆2κ1 −∆2κ2 = c8 + 2
∑
r≥9

cr ≥ 0. (∗∗)

Therefore, we have the following:

Theorem 8.1. If X is a surface with only 1
r
(1, 1) points, then

−2κ0 + κ1 + κ2 + κ3 − κ4 ≥ 0

Now we are able to prove the Main Theorem.

Proof of the Main Theorem. Suppose that X is a del Pezzo surface. Then κ0 = 1

and κm = h0(−mKX) ≥ 0 for m ≥ 0 by Kawamata-Viehweg vanishing theorem.

We also have κ2 ≤ κ4. By 8.1, κ1 +κ2 +κ3 −κ4 ≥ 2, and we get κ1 +κ3 ≥ 2.

Example 8.2. Examples of such X include the weighted projective space P(1, 1, a),

weighted complete intersections X15 ⊆ P(3, 3, 5, 5) and X6,6 ⊆ P(2, 2, 3, 3, 3). In the

latter cases h0(X,−KX) = 0 , but h0(X,−3KX) > 0.

Using the same formulae, we see that del Pezzo with only 1
r
(1, 1) points have the

following property.

Theorem 8.3. If X is a del Pezzo surface with only 1
r
(1, 1) points, then h0(−mKX) ≥

2, for some m ≤ 5.

Proof. By κ1 + κ3 ≥ 2, we have h0(−3KX) = κ3 ≥ 2 if h0(−KX) = 0. We thus

assume that h0(−KX) > 0. Hence we have κn > 0 for all n. Suppose the contrary

that κ1 = κ2 = κ3 = κ4 = κ5 = 1. Then by (**),

2 = κ1 + κ2 + κ3 − κ4 = 2 + c8 + 2
∑
r≥9

cr.
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So cr = 0 for all r ≥ 8. Now since ∆2κ0 = ∆2κ1 = ∆2κ2 = ∆2κ3 = 0. By (*), we

have c5 = c7 = 0, and c3 = c6. But then

0 = ∆κ0 = K2
X > 0,

a contradiction.

We have the following generalization.

Theorem 8.4. Suppose X is a surface with only singularities of types 1
r
(1, 1) and

1
2s+1

(1,−2). Then

κ2 + κ4 + κ6 ≥ 1 + κ3 + κ7.

If moreover X is a del Pezzo surface, then h0(X,−mKX) > 0 for some m = 2, 4

or 6.

Proof. For odd number r = 2s+ 1,

Zm(
1

r
(1, r − 2)) =

1, if m ≡ 0, 2, 4, . . . , r − 1(modr)

2, if m ≡ 1, 3, 5, . . . , r − 2(modr)

Let cr be the number of singularities of type 1
r
(1, 1), and ds be the number of

singularities of type 1
2s+1

(1,−2). From the singular Riemann-Roch theorem, we

calculate the difference and second differences of κ:

∆κ0 = K2
X +

∑
r

cr(1−
4

r
) +

∑
s

ds(1−
3s+ 1

2s+ 1
)

∆2κm = K2
X +

∑
r

cr(Zm+1(
1

r
(1, 1))− 4

r
) +

∑
s

ds(Zm(
1

2s+ 1
(1,−2))− 3s+ 1

2s+ 1
)

Denote A = K2
X −

∑
r
4
r
cr −

∑
s
3s+1
2s+1

ds,d′ =
∑

s≥3 ds, we find in particular,

∆κ0 = A+
∑
r

cr + d2 + d′

∆2κ0 = A+ 2c3 + c4 + 2d2 + 2d′

∆2κ3 = A+ 2c3 + c4 + c5 + c8 + 2c9 + c10 + d2 + d′

∆2κ4 = A+ c3 + c4 + c5 + c6 + c10 + 2c11 + c12 + d2 + 2d′

∆2κ5 = A+ c3 + c4 + c6 + c7 + c12 + 2c13 + c14 + 2d2 + d′

which yields

2∆κ0 +∆2κ0 − (∆2κ3 +∆2κ4 +∆2κ5) = c7 + c8 + c14 + 2
∑
r≥15

cr ≥ 0
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Hence,

κ2 + κ4 + κ6 ≥ 1 + κ3 + κ7

The last assertion follows by κm = h0(X,−mKX) ≥ 0 for m ≥ 0.

In general, we want to construct similar inequalities for ∆2κ of the form∑
i

λi∆
2κmi

≥ 0,

where
∑

i λi = 0 This is equivalent to
∑

i λiZmi
(1
r
(1, b) ≥ 0. However, we find for a

1
r
(1, b) point,

Zm(
1

r
(1, b)) =


1, if r|m(1 + b)

1, if r|(m+ 1)(1 + b)

1{(m+1)( 1+b
r

)}< 1+b
r

+ 1{(m+1)( 1+b̄
r

)}< 1+b̄
r
, otherwise.

By using Hirzebruch-Jung continued fractions we find the set {( b
r
, b̄
r
) | 0 < b <

r, (r, b) = 1} and hence {(1+b
r
, 1+b̄

r
) | 0 < b < r, (r, b) = 1} is dense in [0, 1] ×

[0, 1]. Indeed, given a rational point (x, y) ∈ (0, 1) × (0, 1), we represent them by

Hirzebruch-Jung continued fractions as

x =
⟨u0, . . . , un−1⟩
⟨u0, . . . , un⟩

, y =
⟨v0, . . . , vn′−1⟩
⟨v0, . . . , vn′⟩

.

Consider rM = ⟨u0, . . . , un,M, vn′ , . . . , v0⟩, bM = ⟨u0, . . . , un,M, vn′ , . . . , v1⟩, and

b̄M = ⟨v1, . . . , vn′ ,M, un, . . . , u0⟩. We have ( bM
rM

,
¯bM
rM

) → (x, y) as M → ∞.

Since for 0 < x < 1, with mx /∈ Z, {mx} < x if and only if

x ∈ (
1

m
,

1

m− 1
) ∪ (

2

m
,

2

m− 1
) ∪ . . . ∪ (

m− 2

m
,
m− 2

m− 1
) ∪ (

m− 1

m
, 1)

This means for any finite sequence zm of 0, 1, 2 with z0 = 1, there are infinitely

many pairs (r, b) such that Zm(
1
r
(1, b)) = zm. It seems to prevent us from construct-

ing similar inequalities.
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