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Abstract

The thesis in on the geometry of del Pezzo surfaces. Early researches focused on
smooth surfaces, while recently surfaces with singularities have been mostly consid-
ered. Consequently, in Chapter 2, different types of singularities are first discussed,
and then del Pezzo surfaces can be defined formally in Chapter 3. Research on
smooth surfaces are also given there. In Chapter 4, we introduce the complement
theory developed by Shokurov, and we give some examples of weighted complete
intersection in Chapter 5. Chapter 6 is about the relation between Kéhler-Einstein
metrics and del Pezzo surfaces. In Chapter 7 and Chapter 8, we introduce our re-
search result. We use Riemann-Roch theorem to calculated Euler characteristics,
and then give a special type of nonvanishing theorem.

Keywords: del Pezzo surfaces, singularities, complement, Kéahler-Einstein met-

rics, nonvanishing.
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1 Introduction

Del Pezzo surfaces are projective surfaces with ample anticanonical line bundles.
They have been a popular research topic for a long time since they are Fano and
thus rationally connected, and also come out naturally from MMP. Smooth del
Pezzo surfaces have been classified completely. Studies of singular del Pezzo surfaces
remain an active research area and draw a lot of attention recently. There are several
possible definition of a singular del Pezzo surface. By a singular del Pezzo surface,
we mean a normal surface with at worst klt singularities such that the anticanonical
divisor is nef and big. We remark that for surfaces, klt singularities are known to be
equivalent to quotient singularities[11, 5.21]. In this paper, we shall focus on normal
del Pezzo surfaces with only cyclic quotient singularities.

Given a singular del Pezzo surface X with —Kx nef and big, it is natural to
study the non-vanishing of anti-plurigenera h°(X, —mKy). Shokurov [19] proved
that there exists a uniform bound my for any singular del Pezzo surfaces X such that
h(X, —mKx) > 0 for some 1 < m < my. Nevertheless, there is no effective estimate
of mg. Thus, the nonvanishing of h°(X, —mKx) for small value of m are still of
great interest. It is easy to see that h%(X, —Kx) > 0 for smooth del Pezzo surfaces,
thanks to the Riemann-Roch formula. For singular surfaces, there is also a singular
Riemann-Roch formula by Reid [18, III (8.6)]. By using the singular Riemann-Roch
formula, Prokhorov and Verevkin [17, Cor. 1.3] showed that h°(X, —Kx) > 0 if
X has the Picard number p = 1, and contains exactly 5 singularities. Later, it
was shown in [I] that it is impossible to have 5 singularities. On the other hand,
there exists an example of weighted hypersurface Xo56 C P(13,35,81,128) such
that h%(X, —mKx) = 0, for m < 12, since Ox(—Kx) = O(1) (cf. [4, Table 2.]).
Therefore, one cannot expect the general effective bound to be very small.

We would like to draw the reader’s attention to the recent study of singular
Fano 3-folds. For Q-Fano 3-folds with nef and big anticanonical divisors and with
at worst terminal singularities, the work [5] of Meng Chen and Jungkai Chen shows
(X, —6Kx) > 0.

In this paper, we consider surfaces with singularities of type %(1, 1). There are
two reasons for this. First of all, surfaces with singularities of type %(1, 1) have very

nice combinatorial properties in the singular Riemann-Roch formula. We are able



to derive an interesting type of non-vanishing.

Theorem 1.1 (Main Theorem). Suppose X is a del Pezzo surface with only singu-
larities of the form :(1,1). Then h°(X,—mKx) >0 form =1 or 3.

r
Moreover, given a surface with cyclic quotient singularities, we develop a partial
resolution via particular choices of weighted blowups which we call L-blowups. L-
blowups transform cyclic quotient singularities to singularities of the form %(1, 1).
In principle, Euler characteristics x(X,—mKx) for small m are preserved under
L-blowups. However, situation varies depending on types of singularities. In any

event, we have

Proposition 1.2. Let Y — X be an L-blowup. Then x(X,—Kx) = x(Y,—Ky).

1.1 Notation and Conventions

In this paper, we always work over the complex number field C.

Notation:

¢ = (,: a primitive r-th root of unity in C

(-2 the group of all r-th roots of unity in C

1,6, ...,¢6,: the standard basis of R"

All schemes and varieties are assumed to be at least quasi-projective. For Q-
Cartier divisors, the intersection numbers are defined by extending the intersection

number of Cartier divisors by Q-linearity.

2 Singularities

2.1 Basic properties

We study singularities formally isomorphic to cyclic quotients of A”. First, we
recall some facts about quotient varieties.

Given an affine variety X = SpecA with a finite group G action, we construct
the affine quotient Y = X% = SpecA® and the natural quotient map f : X — Y
induced by the inclusion A® < A. When X is merely quasi-projective, one covers
X with G-invariant affine open sets, and finds the affine quotients can be glued

together. It is easy to see that



Fact 2.1. i) X is normal =Y s normal,

it) X is Q-factorial =Y is Q-factorial.

Conversely, given a normal variety Y, we may pick the normalization X of Y
in a Galois extension over the function field of Y. Then Y = X¢, where G is the

Galois group.

Definition 2.2. (Quotient singularities)
(i) Given ay,...,a, € N, let y, acts on A" by

C- (1,20, xy) — (CMaq, (Pag, ..., (" xy)

. Denote the quotient Xy by A"/ u,. or A”/%(al, ..., ay) to be the standard quotient
singularity of type 1(ai,...,a,). Usually we assume ged(ay, ..., a,) = 1.

(ii) Let p € X be a point. If locally near p, there is a map to a standard quotient
singularity: ¢ : (p € X) — (0 € X;) inducing formal isomorphism O x, — O, x,

we call (p € X) a quotient singularity of type (ai,...,a,), or a *(ay, ..., a,) point.

The morphism required in the definition is actually étale, that make it possible

to pullback resolutions of standard quotient singularities to general ones.
Proposition 2.3. Keep the notation as in Definition 2.2. ¢ is étale near p.

Proof. Since étaleness is an open condition, it suffices to prove this for local ho-
momorphism O x, =+ O, x. By faithful flatness of completion, we only need that
(’50, X, — (’A)p,X is étale, which is an isomorphism by assumption, and hence the

proof. ]

The following proposition says that quotients of smooth varieties by u, actions

indeed give rise to quotient singularities.

Proposition 2.4. Let u, act on a smooth variety X, and p € X be an isolated fixed
point. Let the quotient be (p € X). Then it is a quotient singularity.

Proof. We may assume X = SpecA, an invariant open set, is affine. Since pu, acts

on the maximal ideal p, we get the eigenspace decomposition:

r—1
p= @ I;
1=0

3



where the action is given by ¢ - s = (%s,Vs € I,.

We may choose sy, ...s, € A satisfying ( - s; = (*s; so that they form a regular
system of parameters of A, and obtain a morphism: s : A — A" defined by
X1 = S1,...,%, = Sy. § induces an isomorphism of completed local rings.

Let p, act on A™ by (- (x1,29,...,2,) — ((“xq,("x9,...,(*x,). Then s is
equivariant, inducing the natural map 5 : X — X, between quotient varieties. We
need to check that s also induces isomorphisms of completed local rings. This is

done by Theorem 2.5 below. [

Theorem 2.5. Suppose Ay — Ay is a G-equivariant local morphism such that the
mazximal ideals my, mo are G-invariant. Set B; = AZ-G, fori=1,2. Then B; is local.

If the induced map Al — 1212 is an isomorphism, then so is Bl — Bg.
We prove Theorem 2.5 with a series of lemmata.

Lemma 2.6. Suppose B C A be a finite extension of noetherian rings. Let I be an

ideal of B and J, = ["AN B. Then the I-adic and J,-adic topologies are the same.

Proof. Firstly, I™ C J,, is trivial.

Conversely, T = A® (B, ,(IA)") is finite over B® (B, , I"), and hence so is
the subalgebra S = B & (D, J,) of T.

This implies I.J; = J;41 for i > N for some N. We have then J, = I"NJy C
=, [

Lemma 2.6 holds in particular for B = A%, where G is a finite group acting on
A. For p € SpecB, B, = (A,)¢. Now we assume (B,n) local. A is then semilocal.

Denote by m its Jacobson radical.

Corollary 2.7. i) In A, nA-adic and m-adic topologies are the same.

it) In B, n-adic and m™ N B-adic topologies are the same.

Proof. i) Note that A/nA is finite over B/n, and hence an artin ring. vnA = m.
ii) By Lemma 2.6, n-adic, (nA)™ N B-adic topologies, and m"™ N B-adic topology

are the same. ]

Lemma 2.8. Let B be the n-adic completion of B, A be the m-adic completion of
A. Then A= A®p E, and B C A as topological subspace under n-adic, and m-adic

topologies respectively.



Proof. Since A ®p B is the nA-adic completion of A, which is the same as the m-
adic completion of A (c.f. Corollary 2.7). Since B is flat over B, we obtain the

inclusion. &

Now assume that in Theorem 2.5, |G| € A* is a unit. This holds in particular,

when A contains a field k, and char k& }|G].
Lemma 2.9. B = AC.

Proof. Consider ¢ : B < A, ande: A — B, which is defined by €(x) = ﬁ deGg-x.
Then € o ¢ =id.
Tensoring with B over B, we obtain that the composition B < A — B is the

identity map, and = = ¢(z) € B, for any z € AC. O
We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. The theorem follows from taking G-invariants of the induced

map Al — Ag. U]

Remark 2.10. Singularities of normal surfaces are always isolated. We shall call a
surface quotient singularity a X(a,b) point, if the g, action is given by ¢ - (z,y) —
¢z, ¢"y).

Quotient singularities only occur on the locus where the group action is not free.

First we state an application of Hurwitz formula.

Definition 2.11. Suppose that X = SpecA, Y = SpecB are normal varieties and
f: X — Y is a finite map.

For any height-1 prime p of A, and ¢ = pN B of B, the map f induces a local
morphism of discrete valuation rings B, — A,. Denote the local parameters of A,
and B, by s and t respectively. We define the ramification index e = e(p, q) to be

the integer such that ¢ = us® for some u € Ax/

Theorem 2.12. Suppose X = SpecA, Y = SpecB are normal varieties and f :
X =Y is a finite map. Then Kx = [*Ky + > ;,)=1(e(p;p N B) — 1)p, and the

sum is a finite sum.



Proof. Denote the residue fields of A,, B, by k(p), k(q) respectively. Pick a tran-
scendental basis y1, ..., y,_1 € B of k(q) over C, which is also a transcendental basis
of k(p) over C. Consider the rational n-forms w; = ds A dy; A dys ... A\ dy,_1 and
wy =dt Ndy; ANdys ... Ndy,_1.

First we note that w; is the local generator of wx at p. Indeed, by the second

exact sequence of differential [10, I1. 8.4], we have the following exact sequence
PAy/ (pAp)* = Qa,jc = Qe — 0,

and thus Qx , is generated by ds, dy, . .., dy,—. Similarly, w, is the local generator
of wy.

Fix a rational n-form w on Y, we may also regard it as an n-form on X by pulling
back. We find the coefficient ¢ of ¢ in Ky satisfies w = utwy, where u; € A*. The
coefficient of p in f*Ky is ec, and the coefficient ¢’ of p in K x satisfies w = 15 ws,
where uy € A*.

Now we have
Wy = dt/\dyl/\dyg/\dyn_l

= dus®) Ndyy Ndya ... N dyn—y
= s !(ue + sb)w;

eflulwl.

= s
for some b € B,u’ € BY.

We obtain ¢ = ec + (e — 1), which is the desired equality. N

Remark 2.13. In terms of divisors, write Kx + D = f*(Ky + F), D = )_d;D;,
E = > b;E;. Suppose f(D;) = E; for some 1,7, then d; = bje — (e — 1), ie.,

Theorem 2.14. Suppose G is a finite group acting on the normal variety X, and
the action is free generically. Let f : X — Y be the quotient variety. Then
Kx =7 Ky + Y (|Gp| — 1)D, where Gp is the subgroup fixing D.

Proof. We may assume that X = SpecA, Y = SpecB are affine, with fraction fields
K, L respectively. Then L = K©.

We only need to check that for any prime divisor D, corresponding to height-1
prime p of A, we have e(p,q) = |Gp|, where ¢ = p N B. Consider the Dedekind
domains B, C A, = A®p B,.



Denote the subgroups I, = {g | g(a) — a € pA;,Va € A,} and D, = {g | g(a) €
pA,,Va € pA,} of G. By Hilbert’s ramification theory (cf. [15, I Prop.9.4]) and
since in characteristic 0, the residue field extension k(p)/k(q) is always separable,

r = |orbit of p| = |G|/|D,|

we know that § = [i(p) : k(q)] = Gal(k(p)/k(a)) = Dyl/|T,| But L is exactly

e = ||
the subgroup G ,; fixing D, and hence the proof. ]

Definition 2.15. Let G be a finite group acting on a variety X. Say the action is
free if ® : G x X — X x X defined by (g,z) — (g - x,x) is a closed immersion.

The definition may seem strange at the first glance. However, the following
lemma tells us that, it is the same as the intuitive definition. The advantage is that
Definition 2.15 can be generalized straightforwardly to algebraic group actions on

any schemes.

Lemma 2.16. Let G be a finite group acting on a variety X. The action is free
if and only if for any closed point m € X, there is no non-identity element g € G,

such that g - m = m.

Proof. We may assume that X = Spec A is affine, and G acts on A by automor-
phisms g1, ..., gk.

First we observe that g - m = m if and only if m is g-invariant, and ¢ acts on
A/m as identity, which means {g(a) —a |a € A} Cm.

Also, ® induces the ring homomorphism ¢ : A ®c A — Al¢, defined by a ® b —
(91(0)b ., (D).

Suppose that ¢ is surjective. Then there are a;,b; such that ) a;b; = 1, and
> 9(a;)b; = 0 for all non-identity elements g. We have , and hence {g(a)—a | a € A}
generates A.

Conversely, we are given that {g(a) —a | a € A} generates A for all non-identity
elements g. For g # h, we also have {g(a)—h(a) | a € A} generates A. That is, there
are a;, b; such that ). g(a;)b; — >, h(a;)b; = 1. So the components corresponding
togand hof ) .a, ®b, —) . 1® h(a;)b; are 1 and 0 respectively. From this, we see

that ¢ is a surjective ring homomorphism. O



Proposition 2.17. Suppose G is a finite group acting on an integral scheme X =
SpecA freely. Then A is locally free over B = A% of rank |G|. Moreover, A is étale

over B.

Proof. For p € Spec B, let k be the algebraic closure of the residue field k(p). We
observe that the G also acts freely on the geometric fiber X, = SpecA’, where
A" = A®g k . Indeed, the surjective homomorphism ¢ : A ®c A — Al¢l remains
surjective after tensoring with k. Moreover, since we have the splitting e : A — B
e(a) = ﬁ >_gec 9(a) in characteristics zero, tensoring with k gives we AC =k,

Now, by the structure theorem of artin rings, A’ =A; x Ay x ... X A,,, and
there is a canonically defined subring Ay = k x ... x k (|G| copies) such that the
composition Ay < A’ — A’//0 = Ay is the identity map. G also acts on A,
by permuting components. Since we must have A§ = k, G acts transitively on
components. From this we see all A; are isomorphic, and G acts on A’ by permuting
components as well. But then A'Y = {(x,z,...,2)|r € A;} = k. We must have
A =k,and A" = Ay

Counting dimensions over k gives dimj, A" = |G|. We find dimy,) A ® k(p) = |G|
for all p € SpecB, and hence A is locally free over B of rank |G|. A being flat,
we only need to check A over B is unramified, which can be checked on geometric

fibers. But A" =k x ... x k, it is then obvious that 4/, = 0. O

Remark 2.18. When no divisor of X is fixed by a non-identity element in G, we see
the quotient map 7w : X — Y is étale in codimension 1, and the Hurwitz formula

reads Ky = m*Ky.

2.2 Log singularities

Consider a variety X together with a Q-divisor D = ). d;D;, where d; € Q
and D; are prime divisors of X. If 0 < d; < 1 (resp. d; < 1), then we call D
a boundary (resp. subboundary). If Kx + D is Q-Cartier, then we call (X, D) a
log pair. We usually assume that X is normal, and D is a boundary unless stated
otherwise. By Hironaka’s desingularization theorem, there is a proper birational
morphism f : Y — X such that Y is smooth, and the proper transform of >  D;

and the exceptional divisors are simple normal crossing (SNC, for short). Denote



by D; the proper transform of D;, and set D = > d;D;. We may write

Ky +D = f"(Kx+D)+Y_a(X,D;E))E;
J
for some a(X, D; E;) € Q. Here E; are exceptional divisors of f.

For a non-exceptional divisor E, define
—d;, if E=D;,
a(X,D;E) =
0, otherwise.
It is well known that a(X, D; F) is independent of log resolutions, and is called

the discrepancy of E with respect to (X, D). We write X only instead of (X,0) if

D = 0. Discrepancies make a nice measure of singularities of pairs as follows.

Definition 2.19. Given a log pair (X, D), we introduce the following:

i) (X, D) has only log canonical singularities or is log canonical, denoted lc, if
a(X,D; E) > —1 for all E, and for all log resolutions.

ii) (X, D) has only Kawamata log terminal singularities or is klt if a(X, D; E) >
—1 for all F, and for all log resolutions. In particular, 0 < d; < 1.

iii) (X, D) has only pure log terminal singularities or is plt if a(X, D; F) > —1
for all exceptional E, and for all log resolutions.

iv) The log canonical threshold (lct) of (X, D) is defined by
let(X, D) = sup{\|(X, AD) has only log canonical singularities.}

Remark 2.20. i) The definition for log canonical and klt singularities are actually
independent of resolutions, which can be seen by using a common resolution.

ii) Being log canonical, klt, or plt is a local property. For an open cover {U,} of
X, (X, D) is log canonical (resp. klt, plt) if and only if (U,, D]y, ) is log canonical
(resp. Kklt, plt) for all a. Similarly, let(X, D) = inf, lct(U,, D]y, ). It also makes

sense to talk about lct at a point p, namely,
let, =sup{\|(U, AD|y) is lc, for some neighborhood Uof p}.
We will need some facts of singularities of pairs. (cf.[13]).

Lemma 2.21. Let (X, D) and (Y, E) be log pairs. Suppose f:Y — X is a proper
birational morphism, and Ky + E = f*(Kx + D) then (X, D) is log canonical (resp.
kit) if and only if (Y, E) is log canonical (resp. kit)

9



Proof. Take a log resolution of (Y, E'), which is also a log resolution of (X, D). Then
this follows directly by definition. ]

Lemma 2.22. Let (X, D) and (Y, E) be log pairs. Suppose f :Y — X is finite
étale, and E = f*D then (X, D) is log canonical (resp. kit) if and only if (Y, E) is
log canonical (resp. klt). Moreover, lct(X, D) = lct(Y, E).

Proof. First we take a resolution 7 : (Z, D) — (X, D), and write

K2+D:7T*(Kx+D)+ZajEj

j
Do the base change of 7 : (Z, D) — (X, D) by f, and we obtain 7’ : (W, E) — (Y, E)
a resolution. Pulling back the above equation by f': W — Z gives
Ky +E ="Ky +E)+) a;f"E;
J

Now that f™E; cannot be multiple for f” is étale. So every discrepancy remains

invariant under pullback. O
In general, being log canonical is preserved by finite morphisms.

Lemma 2.23. Let (X, D) and (Y, E) be log pairs. Suppose f:Y — X is a finite
morphism such that Ky + E = f*(Kx + D). Then (X, D) is log canonical (resp.
klt) if and only if (Y, E) is log canonical (resp. kit).

Proof. First we prove the “if” part. Choose a log resolution ¢ : Z — X, and define

W to be the normalization of a component of Y X x Z dominating X .

w2y

b

Z =X
Write Kz + D' = g*(Kx + D), where D' = g;'D — >~ a(X, D; D;)D;. Pulling back
via f’ gives f*(Kz + D') = f*¢*(Kx + D) = ¢*(Ky + E)

Now write Kw + E' = f*(Kz + D'). By Hurwitz formula, for a divisor E;
in £', with f'(E;) = D; for some j, the coefficients satisfy (1 + a(X, D, D;)) =
L1+ a(Y,E,E;)) > 0 (resp. > 0), if (Y, E) is log canonical (resp. klt).

From this, for the “only if” part, we reduced to the case f is a Galois cover,

i.e., X is a quotient variety of Y for some finite group action of G. We take now,

10



besides W, Z, a G-equivariant log resolution ¢’ : W7 — W, and let the quotient
be Z; = W&, Such resolution exists by the functorial construction under smooth
morphisms. Replace W, Z by Wi, Z;. Note that Z; is Q-factorial, and we can
calculate as before. For a divisor E; in E’ with f'(E;) = D;, Hurwitz formula gives
(1+a(Y,E;E;)) = e(l +a(X,D;D;)) > 0 (resp. > 0), if (X, D) is log canonical
(resp. klt). O

Kawamata-Viehweg vanishing theorem is a useful theorem in birational geome-

try.

Theorem 2.24 (Kawamata-Viehweg Vanishing Theorem). Suppose X is smooth,
H is an ample Q-divisor. Then H'(X,Kx + [H]) =0 for i > 0.

We also have the following relative version. [ 1, Remark 1-2-6]

Theorem 2.25 (Relative Kawamata-Viehweg Vanishing Theorem). Suppose (X, D)
is klt, H is a Q-divisor, and Kx + D + H is an integral divisor.. If f : X — Y isa
projective morphism such that H is f-nef and f-big then Rf:Ox(Kx+ D+ H) =0

forv > 0.

Proof. Case 1. X is smooth, H is f-ample, and D = [H| — H is SNC.
We may assume that X,Y projective. Let L be an ample Cartier divisor on Y.
Replace H by H + f*L, we may assume that H ample by projection formula.

Consider the spectral sequence:
Ey’ = H'(Y, Rf{(Ox(Kx+[H))®0y (Y, mL))) = H(X, Ox(Kx+[H]+m["L))

. By Serre vanishing, for m large, the spectral sequence degenerates as

HO(Y, RfI(Ox(Kx+[H])®Oy(Y,mL))) = H(X, Ox (Kx +[H]+mf*L)) = 0
for j > 0 by Theorem 2.24. So, Rf!(Ox(Kx + [H]|) = 0.

Case2. General case.

By Lemma 2.26 below, which is a corollary of Kodaira lemma, we take a res-
olution g : Z — X of (X, D) such that g*H — . 6;F; is (f o g)-ample for some
0 <d; < 1, and {F}}, proper transform of D and exceptional divisors, are SNC.

We may apply Case 1 on g and h = f o g, to the divisor H, = g*H — 3 0;Fj.
Then for ¢ > 0,

R'g,07(Kz + [H{]) = R'h,Oz(Kz + [H{]) = 0.
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Hence by spectral sequence,
0= Rn.Oz(Kyz+[H]) = R f.9.07(Kz + [Hy]).
On the other hand,
9:02(Kz + [H1]) = 9.0z(|[ Kz + H,|) = Ox(Kx + D+ H),
since [Kz — g*(Kx + D)] is effective exceptional by the condition of being klt. [

Lemma 2.26. Suppose f : X — Y is a proper surjective morphism of normal
varieties, and H is an f-nef and f-big divisor. Then there is a resolution g : Z — X
such that g*H—Zj 0;F} is fog-ample for small0 < §; < land {F;}, proper transform

of D and exceptional divisors, are simple normal crossing.

Remark 2.27. Being f-nef and f-big is a numerical property. We easily derive the
form that for an integral divisor D' = Kx + D + H, we have R'f,(O(D')) = 0, for

7> 0.

Here we introduce a special type of singularities called rational singularities.

Definition 2.28. X is said to have only rational singularities if for a resolution

f:Y = X, Rif.Oy =0foralli>0.

Remark 2.29. Tt is known that the definition of rational singularities is independent

of resolutions.

Theorem 2.30. A surface with only quotient singularities is klt and thus has only

rational singularities.

By Lemma 2.23, we see quotient singularities are klt. To prove klt singularities
are rational, however, requires some work. We reproduce the proof in [14, Chap. 5]
here.

First we recall a coherent sheaf F is CM (Cohen-Macaulay) if all its stalks F,
are CM modules. A scheme X is CM if the structure sheaf Oy is CM. Projective

CM varieties can be characterized as follows:

Lemma 2.31. [/, 5.72] For a projective variety X and an ample Cartier divisor

D, X is CM if and only if H(X,Ox(—rD)) =0 fori < n and large r.

12



We have the following alternative characterization of rational singularities.

Proposition 2.32. [13, 11.9] X has only rational singularities if and only if X is

CM and for a resolution f:Y — X, we have f.wy = wx.

Proof of Theorem 2.30. Suppose (X, A) is klt, and we prove X has only rational
singularities. Let f:Y — X be a resolution. Then it suffices to prove that f.wy =
wy. Write Ky = f*(Kx+A)+ET—E~, where ET, E~ > 0 are exceptional divisors
without common components. Now [ET| = Ky — f*(Kx+A)+ E~+{—FE*}, and
(Y,E~ + {—E*}) is klt for Y is smooth and E~ + {—E"} is SNC with coefficients
in [0,1). By Kawamata-Viehweg vanishing theorem, R'f,Oy ([ET]) = 0 for i > 0.

For any ample Cartier divisor D, by Larey spectral sequence
EP? = HP(X,0x(—D) ®@ R f.Oy([ET])) = H"*(Y,Oy([ET] — f*D),

we get H(X,Ox(—D)) =2 H(Y,Oy([E"] — f*D). Since this morphism factors
through H (Y, Oy (—f*D), we get the injection:

H'(X,0x(=D)) = H'(Y,Oy (- f"D)).
By Serre duality [, 5.71] and Kawamata-Viehweg vanishing theorem,
H'(Y, Oy (~f*D)) = H"(Y,wy(f"D)) =0

for i < n, and thus H (X, Ox(—D)) = 0. This implies X is CM. On the other hand,

for i = n Serre duality gives
H(Y,wy(f*D)) = H'(X, fawy(D))) - H'(X,wx (D)),

which implies f,wy — wx is surjective, and hence an isomorphism. [

2.3 Toric varieties and singularities

It is easier to study cyclic quotient singularities as toric varieties. Here is a brief
review.

Given a lattice N C R”, and a rational polyhedral cone o, we consider the dual
lattice M = {x € R" | (z,y) € Z,Vy € N} and the dual cone 0¥ = {z € R"|(x,y) >
0,Vy € o}. Then we define R, = k[X* | x € 0¥ N M] C k[X]| = k[Xy1,...,X,] and

the toric variety X, = Spec R, .

13



Example 2.33. The standard quotient singularity A"/, of type %(al, agy ..., Q) 1S
the toric variety defined by the lattice N = Ze, +Zey+. . .+ Ze, +Z- %(al, @) an)
and o the first orthant. We may assume 0 < a; < r.

For surfaces, let N be any lattice in R?, and o a cone bounded by the rays [
and [5. By a change of coordinates, we may assume o the first quadrant, and write
N = Zey + Zey + Z2(1,b), where 1(1,b) is the nearest point of N to the y-axis in

(0,1) x (0,1). We always get a cyclic quotient singularity on X, or X, is smooth.

Fact 2.34. If ¢/ C o is a face, then the induced map X, — X, is an open

Immersion.

From this, we see that given a fan X, i.e., a collection of cones that closed under

taking faces, we may paste all X, along the faces to get a variety Xs.

Example 2.35. Consider N C R? = Re; @ Re, a lattice and a cone defined by two
rays bounding it. We construct a fan 3 defined by several rays lyp = ey, l1,...,lp = e
in order. Let the cone bounded by /;_; and [; be ¢;, and the cone bounded byl, and
lp is 0. We say [y, ...,l;_1 subdivide ¢ into o, ..., 0.

If o; N N can be generated by only two elements as monoid for all ¢, then the

corresponding X, and hence the entire Xy is smooth.

2.4 Resolution

A standard technique to resolve quotient singularities is weighted blowup. It is

usually useful and convenient to introduce in terms of toric geometry.

2.4.1 Weighted blowups

Suppose N C R? = Re; @ Re, is a lattice, and a cone o is assumed to be the
first quadrant. Then NNV, o defines a toric variety Xy. Consider a ray [ = Rygv in o,
such that [ N N = Z>ov, If [ subdivides o into two cones oy, 03, and the resulting
fan defines a toric variety Yy. Call 7 : Yy — X, the standard weighted blowup along
v. We see that a standard weighted blowup turns a standard quotient singularity in
Xo to other possibly nicer standard quotient singularities in Yj.

In general, for a quotient singularity, locally we have an étale morphism X —

Xo,then we set Y = Y{ xx, X. In what follows, we omit the fibred product construc-
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tion, and treat all quotient singularities as if they were standard. A weighted blowup
turns a quotient singularity in X to other possibly nicer quotient singularities in Y
of the same types as those of X and Y.

To see this, observe that the formal fibres Y x Spec@x,p — Yy x Spec(’A)XO,o over
Spec@x,p — Spec(’jxo,o are isomorphic. In particular, the fibres are isomorphic. If
q € Y is a point corresponding to gy € Y on the fibres. The morphism Spec(f)yo,qO —
Y, factors through Y x SpecOx, 0, and hence @yom = (’A)yﬂ. We see ¢ and ¢p are
either both smooth points or both quotient singularities of the same type.

If we pick several rays in o, we may do weighted blowups in any order without

affecting the final result, which is defined by the resulting fan of cones.

Proposition 2.36. Suppose P € X is a = (1 b) point, and we do a weighted blowup
m:Y — X for P along v = —(s t). Then we get two possibly singular points: Q1, a
%(1, ”bs) point, and Q,, a +(1, ”bt) point, where b denotes the minimal positive

t

integer such that bb = 1(mod r). Moreover,

Ky = F*Kx—i—(sT—H — 1)E,

E? = —é;
K2 - K% = —r(st 1)

where E is the exceptional divisor.

Remark 2.37. To be strict, intersection numbers are only defined for proper varieties.
However, we may assume X and hence Y are proper. The above statement only

depends on a neighborhood of P.

Proof. Let 01 = Rxpes + R>gv, 02 = R>pe; + Rxgv be the two cones formed after
the subdivision. Then we write N = Ze; + Zv + Z%(l,b) = Zey + Zv + Z1(b,1)
with 2(1,0) = 2o+ =%ey and 1(b, 1) = Lo ==t 5+bt . We find o0; defines a quotient
singularity @); of the asserted type for i = 1, 2.

Denote by Dy, D5, the invariant divisors on X associated to ey, e5, and Dl, DQ, DU =
E the invariant divisors on Y associated to ey, es, v respectively. Then we have lo-

cally (cf. [9, p.61,89])
Kx = —Dy— D,
Ky - _Dl — 152 — Dv

7T*Di = Di+<€i,U>D1,
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We obtain that Ky = 7*Kx 4 (22 — 1)E.

Moreover, by computing the intersection number, we have D;.E = % By pro-
jection formula, we have 0 = 7*D;.E = D,.E + £E?, and thus E? = —Z_ Finally,
Ky — K% = —L (22 —1)? follows from another application of projection formula. [

Fact 2.38. Let X be a proper toric surface. Suppose the open set X, is defined
by the lattice N = Zey + Zey + Z%(l,b) C R?, and cone o is the first quadrant.
Denote by Dy, Do, the invariant divisors on X associated to ey, es. Then we have

Dl.DQ = % (Cf /7 pgr]/)

2.4.2 Hirzebruch-Jung continued fractions

Definition 2.39. Define (u,, ..., u;) to be the upper left corner entry of the matrix

It is convenient to define () = 1.

Lemma 2.40. The following properties hold:

i) (u) =u, and (U, ..., u1) = Up (Up_1, ..., U1) — (Up_2,...,U1).

i) If uy, ... up > 2, then (U, ... u1) > (Up_1,...,u1).

u, —1 Up—1 —1 up —1
i)
1 0 1 0 1 0
B (U« ooy U) — (Up, .., Ug)
<un,1,...,’U/1> —<Un,1,...,lb2>
and (Up_1, .., u1) (Upy ooy Un) = (Upy oo u) (U1, .- ug) + 1.
)
(U« ooy u7) 1 1
= n = un —_
(Un_1, 1) <un—17 ) U1> 1
<Un—2> e ,U1> Up—1 —
1
Up—2 —
1
Cw
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V) (Upy .o ur) = (Up, ... Up).

vi) Given relatively prime r > b € N, one can write

7"‘ ].
7 = Up ’
b 1
Up—1 —
1
Up—2 —
1
Cw
where u; > 2 are integers. Then r = (Up, ..., u1), and b = (Up_1,...,u).

Proof. These are some what standard, we prove (v) for reader’s convenience.

v) Note that
1 0 u —1 1 0 u —1
0 —1 1 0 0 -1 1 0

]

Remark 2.41. The continued fraction of 7 above is called the Hirzebruch-Jung con-
tinued fraction. We refer the readers to [?, Notation 2.1] and [?, Sec. 2] for the
introduction and proofs. We will sometimes call a %(1, b) point a (u,,...,u;) point.
Denote r = (up,...,u1), b = (Up_1,...,u1), and set a = up, ¢ = (Up_2,...,U1),
b= (Up,...,u), and k = (up,_1,...,uy) then we have r = ab — ¢,1 + rk = bb, with
a22,0§5,c<b.

Let N = Ze, + Zey + Z%(l, b), and the cone 0 = R>pe; + R>pez. The Newton
polygon P is defined to be the convex hull of N Na\{0}. Write

P():eQapl:(alab1)7"'7pk::(ak‘abk‘)ypk-‘rl =€

with 0 < a; < ... <ap < 1l,and 1 > b, > ... > b > 0, to be the lattice points

appeared on the boundary of P. We have a formula for (a;, ;).

Proposition 2.42. If we denoter = (uy,...,u1), and b = (Up_1,...,u1), then

k=n,and (a;,0;) = (£ (tn, ..., Uis1) s = (Uniy .., U1)),-

Proof. We prove it by induction on n. Firstly, it is clear that (ai,b1) = £(1,b).
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We find (ag, by) is defined by 1+ by = agb, with by < by. In other words, ¢ = ras
and ¢ = rby satisfy r = gb— ¢, s0 ¢ = up, ¢ = (Up_2,...,u1).

Now set 0’ = R>oP1 + Rspeq, and we find N = ZP, + Zey + ZP,, with P, =
%61 + %Pl.

The Newton polytope P’ of NNo’, which is the same as PN ¢’ will have vertices

Py = diey + WPy, where (af, b)) = (§ (tn—1, -, Uis1) s § (Un—i, - .., u1)).
So (@it1,biv1) =(a; + %bé, %bz) = (% (Uny - Uig1) s % (Un—iy -, u1)). o

Moreover, we see that

¢

Uy Py =R+ P,

U1 Py = P+ P,

w1 P, =P, 1+ P

\

2.4.3 Resolution and partial resolution

To resolve a +(1,b) point, we consider N = Zey + Zey + Z - £(1,b) and o is the

first quadrant. Keep the notations in Remark 2.41

Proposition 2.43. If we do the weighted blowup along P, = X(1,b), then we get

only one possibly singular point .
Proof. In the proof of Proposition 2.42, we find that ¢’ gives a %(1, ¢) point. ]

Continue in this manner, we can do weighted blowups along P; for i =1,... n.
Denote the resulting cone by o; for ¢ = 0,...,n. Then 0; "N = Z>oP; ® Z>oPi11.
We see the minimal resolution of a %(1, b) point can be obtained as the composition
of weighted blowups along Py, ..., P.. If instead, we consider the weighted blowup
along (), = P, + P», then we obtain m; : X1 — X, which we call a simple L-blowup.

The following proposition shows what we get after a simple L-blowup.

Proposition 2.44. If we do the weighted blowup along Q1 = P, + P», then we get
only two possibly singular points of types %H(L 1) and ﬁ(l, c).

Proof. First we note P, = %(a,¢), Q1 = 2(a+1,b+c). Now o is divided into o7, o,
and we may write N = Zey @ ZP, © Q1 = Ze, D LP, ® ZQwith P, = ﬁ@l + #162
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and P, = #el + 55:Q1. We obtain singular points of types #(1, 1) and ﬁc(l, c)

corresponding to the cones o} and o, respectively. L]
Continue in this manner, we do further blowups along Qs = Po+ P53, ..., Q.1 =
Pi_1 + Py successively, . Denote the resulting cone by o}, i = 1,...,n. Then

we may write N = ZPO D ZPl D ZQl = ZZOP’VZ-H D ZZOPn D ZZOQn—l and N =
L>0Qi—1+ Z>oP; + Z>oQ; for 0 < i < n . We then obtain n singular points of types

1 1 1 1 1
1,1), ——(1,1), ——(1, 1), ... 1.1 1,1
Un‘i‘].(, )’Un_1+2 9 )7Un_2+2(7 )7 ,U2+2(’ )’U1+1(7 )
corresponding to the cones oy, ..., o/, respectively. The map Y, — X is defined to

be an L-blowup, and we summarize the above discussion to the following.

Proposition 2.45. For a surface X with cyclic quotient singularities, there exists
an L-blowup

Y =X, — X-1—> ... > X1 — X,

such that each X; — X;_1 is a simple L-blowup and Yy, contains only singularities

of type +(1,1).

3 Del Pezzo Surfaces

Del Pezzo surfaces are the main subject in this paper. Here is a brief introduction.

Definition 3.1. i) [0] A del Pezzo surface (resp. generalized del Pezzo) X is a
smooth surface with —Kx ample (resp. nef and big).

ii) [16]A log del Pezzo surface is a log pair (X, D) with only log canonical singu-
larities, such that —(Kx + D) is nef and big.

Example 3.2. It is clear that P2, P! x P! are del Pezzo surfaces.
Starting from X, = P2, we perform blowups at a point repeatedly. Say,
X, > X1~ ...— X,

Since K2i = Kg(H — 1, and Kg(o =9, we find K)Q(T > ( if and only if » < 8. For
acurve C = Plin X, 4, let C be its proper transform in X;. Then —Kxi-é' remains

positive (resp. nonnegative) if and only if the point blown up does not lie on C, or

C? > —1 (resp. C? > —2).
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Conversely, we want to find the condition to ensure —K, is ample (resp. nef
and big). Firstly, we know r < 8 and we may not blow up a point on a (=1)-curve
(resp. (—2)-curve). Now for a curve Cy C P? of degree d > 3, denote by Cj its
proper transform in X;. We only need to decide when —Kx, .C, > 0 (resp. > 0)

If the point we blown up at step 7 is a point of multiplicity e; of C;_;. Then
Ci.Kx, = Ci_1.Kx + ¢e;, and p,(C;) = p(Ci_1) — %ei(ei —1). (cf [10, V. Prop. 3.3,
Cor. 3.7])

We have C,.Kx, = e;+...+e,—3d, and p,(C,) = 5(d—1)(d—2) —% S eile—

1) > 0. Since the function g(z) = z(z — 1) is concave, let s =e; + ...+ ¢e,.. Then

Suppose s > 3d, we have (d —1)(d — 2) > 3d(2d — 1), and thus d = 3,4. When
d = 4, all inequalities take equality, and in particular e; = ... = eg = 3/2, which is
absurd. When d = 3, the only case is r = 8, and ¢e; consists of 1,1,1,1,1,1,1,2, and
C..Kx, =0.

In conclusion, —Kx, is ample if and only if » < 8, and we do not blow up any
point on a (-1)-curves each time, nor do we blow up 7 points together with a singular
point on a cubic curve. We say the points satisfying this condition to be “in general
positions”. Likewise, —Kx, is nef and big if and only if » < 8, and we do not blow
up any point on a (-2)-curves each time. We say the satisfying this condition to be
“in almost general positions”.

Smooth surfaces with nef and big anticanonical bundle are classified as follows.

Theorem 3.3. [71, 0, Proposition 0.4/
i) A del Pezzo surface is P2, P x PL, or P2 blown up 1,...,8 points in general
positions.

ii) A generalized del Pezzo surface is a P, P! x P!, the Hirzebruch surface Fl,

or P? blown up 1,...,8 points in almost general positions.

We recall that the n-th Hirzebruch surface F), is the projective bundle of Op1 &
Op1(—n) over PL.

Proof. By the following Lemma 3.4, X is rational. It is well known that the minimal

rational surfaces are P? and Hirzebruch surfaces. However, it is impossible for a del
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Pezzo surface (resp. generalized del Pezzo surface) to contain a (—2)-curve (resp,
(—3)-curve). We must have X is a blowup of P? or Fj, itself in the case of generalized

del Pezzo surfaces. [
Lemma 3.4. Let X be a generalized del Pezzo surface. Then X is rational.

Proof. By Castelnuovo’s Rationality Criterion [10, V.6.2], it suffices to prove the
irregularity ¢ = H'(X,Ox) = 0 and the plurigenus P, = H°(X,2Ky) = 0. Write
Ox = Kx+(—Kx), and Kawamata-Viehweg vanishing theorem gives ¢ = 0. On the
other hand, if D € |2Kx/, then 0 > D.Kx = 2K% > 0, which is a contradiction. [J

Here are some examples of log del Pezzo surfaces.

Example 3.5. Let X = F}, be the n-th Hirzebruch surface. Denote the negative
curve by C, and a fiber by f. We have the intersection pairing given by C? = —n,
C.f =1, and f? = 0. The canonical divisor is Kx = —2C + (=2 —n)f .(cf. [10,
V.2.11]) We find that (X, (1—2)C) is a log del Pezzo surface, and (Kx+(1—2)C)? =
n+4+ 2

From the above example, we see that for log del Pezzo surfaces (Ky + D)? is
unbounded. The problem seems to arise because (X, (1 — 2)C) becomes more and
more singular, i.e., 1 — % — 1 as n — oo. Alexeev and Nikulin showed that if we

only allow e-klt singularities, then there is a bounded family for log surfaces.

Definition 3.6. For € > 0. Let (X, D) be a log pair, D = . d;D;. We call (X, D)
is e-klt if for all log resolutions we have a(X, D; Ej) > —1+¢, for all E, in particular,

0<d;<1—ce

Theorem 3.7. [/0]Fore > 0, Let (X, D) be a e-klt log surface such that —(Kx + D)
is nef. Then the class { X} is bounded. Except for the case when D =0 and Kx = 0.

In particular, the theorem works for log del Pezzo surfaces.

4 Complements on Log Surfaces

The notion of complements was introduced by Shokurov. It turns out to be a
very useful tool in the study of Fano varieties. We recall some results of Shokurov.

The material of this section are mainly from [16].
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4.1 n-complement

Definition 4.1. Let X be a normal variety, and set D = S + B, where S > 0 and
integral, | B| <0, and S, B have no common components.

We call (X, D) n-complementary and (X, D) its n-complement if

i) n(Kx +D%) ~0

ii) (X, D) has only log canonical singularities.

iii) nD* >nS + [(n+1)B]

We see that when D = S = B = 0, the third condition is equivalent to D™ > 0.
Also, that (X,0) is n-complementary implies the nonvanishing, h°(X, —nKx) > 0.
Remark 4.2. (X, D) is n-complementary if and only if 3D € | — nKx — nS —
[(n + 1)B]| such that D* = S+ (|(n+1)B] + D) , and (X, D") is lc.

For curves, we have a slight generalization.

Definition 4.3. Let X be a nodal curve, and set D = S + B, where S > 0 and
integral, | B| <0, and S, B have no common components.

We call (X, D) n-semi-complementary and (X, DT) its n-semi-complement if

i) n(Kx +D*) ~0

ii) (X, D7) is sle, i.e. Supp DT N SingX = (), and all coefficients are < 1

iii) nD* > nS+ |(n+1)B]

Then the following theorem is proven by classification.

Theorem 4.4. [12, 19.4] Let X be a nodal connected curve, and D, a boundary
divisor, is supported on smooth and compact part of X. Assume the degree of
—(Kx + D) is nonnegative on every compact component of X. Then Kx + D is

n-semi-complementary for somen =1,2,3,4,6.

We may induce semi-complements on a curve to complements on a log del Pezzo

surface.

Theorem 4.5. If (X, D) is a log del Pezzo surface which is not klt, then there exists

a reqular complement i.e., n-complement for some n =1,2,3,4, or 6.

To prove this, we need a series of preparation. First we introduce dlt singularities,

which will be proven useful.
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Definition 4.6. Suppose (X, D) is a log pair. We say it has only divisorial log
terminal singularities or is dlt if there is a log resolution f : Y — X such that the

exceptional locus consists of only divisors, and when we write

Ky +D=f(Kx+D)+Y_ a(X,D;E))E;

J

we have a(X, D; E;) > —1 for all exceptional divisors E;.
We have a useful technique called dlt modification.

Proposition 4.7. [10, 3.1.1]

Let (X, D) be a log pair of dimension < 3, and (X, D) is lc. Then there exist
g: X' = X and a boundary D' such that

i) Kx' + D' = ¢"(Kx + D)

i) (X', D) is dlt

iii) X' is Q-factorial, and if dim X = 2, we may assume X' is smooth.

Remark 4.8. The proof involves the relative log minimal model program (LMMP)
[141, 3.31], which is a procedure described as follows:

The input is a dlt pair (Z,A), with Z normal and Q-factorial, and a projecive
morphism a : Z — S.

The output is also a dlt pair (Z’, A), with Z’ normal and Q-factorial and bira-
tional over S and either

i) Kz + A is nef over S, or

ii) There is a Fano contraction Z/ — W, dim W < dim Z'.

(Z,A) and (Z',A") is connected by a series of divisorial contractions and flips,

whose inverses do not contract any divisors.

Proof. Take a log resolution f : Y — X. Write Ky + Dy = f*(Kx+ D)+ Et—E~,
where Dy = f-'Dx, and E*,E~ are effective exceptional divisors with no common
components. Then Dy + E~ is a boundary, hence (Y, Dy + E~) is dlt. Apply LMMP
to (Y, Dy + E~) over X, we arrive at g : X’ — X, with X’ normal Q-factorial , such
that (X', D’) is dlt, and Ky + D' is g-nef.

Set h:Y --» X'. We find Kxs + D' = h(Ky + Dy + E~) = h(f*(Kx + D) +
Et)=g¢*(Kx + D) + h E™, and thus h,E" is g-nef.
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Now g.(h.E™) = 0, by the following lemma, we have —h,E* > 0. But it is clear
that h BT >0, so h,ET =0. We get (i).

Now we consider the case dim X = 2, and show X’ is smooth. If E* # 0, then
E*? < 0 and there is an exceptional divisor E, with ET.F < 0, and £E? < 0. Then
Ky + Dy + E-.FE = ET.E < 0, and thus Ky.E < 0. We find E is a (-1)-curve,
and LMMP contracts such curves. The process then proceed with only smooth

surfaces. OJ

Lemma 4.9. [1/, 8.39]
Let g : X' — X be a proper birational morphism between normal varieties.

Suppose —B is a g-nef Q-Cartier Q-divisor. Then B > 0 if and only if g.B > 0.
By the following observation, we find we may assume (X, D) is dlt in the theorem.

Proposition 4.10. Let f : X — Y be a birational map, and D be a subboundary.

Kx + D is n-complementary implies Ky + f(D) is n-complementary.

Proof. Pick f(D)™ = f(D*). We note that n(Kx + D%) ~ 0 implies n(Ky +
F(DY)) ~ 0. Thus Kx + D* = f*(Ky + f(D")). O

Now we introduce another ingredient called connectedness lemma.

Lemma 4.11 (Connectedness Lemma). [10, 2.3.1]

Let f: X — Z be a contraction, i.e. f.Ox = Oz. Let (X, D) be a log pair such
that D > 0 and —(Kx + D) is f-big and f-nef. Let g:Y — X be a log resolution,
and write

Ky:g*(Kx+D>+E+—E_

where the coefficients of E= > 1, the coefficients of EY > —1, and E*, E~ have no
cOmmMon components.

Then Supp E~ is connected in a neighborhood of any fiber of h = f o g.

Proof. We find that [E*] — |[E~| = Ky — g"(Kx + D) + {—E"} + {E~} is h-nef

and h-big by assumption. By Kawamata-Viehweg vanishing theorem
R'hOy([ET]| = |E7|) =0
From this we derive the surjectivity h,Oy([E*]) = hOg- | ([E1]).
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Since a component F in E™ is either g-exceptional, or the proper transform of
a component of D, and in the latter case, [ET] = 0, we must have [E1] is g-
exceptional, and h,Oy([ET]) = Oz. Now near some fiber h='(z) of 2 € Z, we
have Oz. = hOy([E™])) = hOg-|([E1])). Nevertheless, h,Op g (([E¥]))
can not be a direct sum of two proper submodules, and Supp F~=Supp |[F~| is

connected near h=!(z). O
The following application is important.

Definition 4.12. Let (X, D) be a log pair. Call a subvariety W C X a log canonical
center, if there exist a log resolution p : ¥ — X and a divisor E (not necessarily
exceptional) such that a(X.D;E) < —1, and p(E) = W. The union of all log

canonical centers is call the locus of log canonical singularities, denoted LCS(X, D).

Remark 4.13. In the definition of LCS, we can get all log canonical centers in one

log resolution.

Corollary 4.14. Under the same assumptions as the theorem, LCS(X, D) is con-
nected in a neighborhood of any fiber of f.

We also need some knowledge of adjunction and inversion of adjunction. |

Chapter 16]

I

Proposition 4.15. Let X be normal, S be a reduced subscheme of codimension 1,

and B be a Q-divisor. Assume (X, S+ B) is log canonical in codimension two, then
there is a naturally defined effective Q-divisor Diffs(B) called the different such that
Kx + 8+ Bls = Ks + Diffs(B).

Remark 4.16. Rigorous definition of the different may be found in [12, Chapter 16].
There, the different is defined as a Q-Weil divisorial sheaf under very mild condition.
However, showing the different a Q-divisor, i.e., supporting outside the singularity

of S, in this context is by classification.

Proposition 4.17 (Inversion of adjunction). [12, 17.6]
Let (X,S 4 B) be a log pair, S be an irreducible divisor, and |B| = 0. Then
Kx + S+ B is plt near S if and only if Kg + Diff( B) is klt.

25



Proof. Let g : Y — X be a log resolution, write Ky = ¢*(Kx + S + B) + ET —
E~, where the coefficients of E~ > 1, and the coefficients of E* > —1. By the
Connectedness lemma with f : X — X the identity map, we have that E~ is
connected near any fiber of g.

By adjunction, K¢ = ¢*(Ks + Diffs(B)) + (E* — E’)|s/, where S’ is the proper
transform of S, and E~ = S+ F'.

By definition, Kx + S + B is plt «<= E’ = 0, and Kg + Diffg(B) is klt <=
E'NS" = (. By connectedness of E~ we see they are equivalent. [

Theorem 4.5 is reduced to the following induction theorem.

Proposition 4.18. Let (X, D) be a log surface, f : X — Z ,and o € Z. Denote
S =|D]J, and B=D — S. Suppose

i) Kx +D is dit

it) —(Kx + D) is f-nef and f-big

iii) S # 0 near f~1(0)

If near f~'(0) NS, there exists an n-semi-complement Kg + Diffs(B)* of Ks +
Diffs(B), then near f~'(0), there exists an n-complement Kx+S+ BT of Kx+S+B.
Moreover, Diffs(B)* = Diffs(BY) .

Proof. Firstly, by classification, S is simple normal crossing, and X is smooth near
the singularities of S. B does not pass through singularities of S, for otherwise it
would be not lc. By Szabo’s refinement of Hironaka’s resolution theorem, we may
take a log resolution ¢ : Y — X, such that gg = g|g is an isomorphism. Write
Ky + Sy + A = g*(Kx + S 4+ B), where Sy is the proper transform of S. There
is a Q-divisor Kg + Diffs(B) = Kx + S + B|s [12, 16.6], and Kg, + Diffg, (A) =
g5(Ks + Diffg(B)).

By assumption, there is an n-semi-complement K+ Diffs(B)™ of Kg+ Diffs(B),
and hence Kg, + Diffs, (A)" of K, + Diffs, (A). That is, there exists

© € |nKs, — [ (n+ 1)Diffg, (A)]| such that nDiffs, (A)" = |(n + 1)Diffs, (A) | +
()

Now —nKy — (n+1)Sy — [(n+ 1)A] = Ky + [—-(n+ 1)(Ky + Sy + A)], and
by Kawamata-Viehweg vanishing theorem, we have R'h,(Oy(—nKy — (n+1)Sy —
|(n+1)A]) = 0, where h = fog. We get the surjectivity: H°(Y,Oy(—nKy —
nSy — [(n+ 1)A]) — H(Sy, Os, (—nKy — nSy — | (n + 1)A]).
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So there exists = € | — nKy —nSy — [(n+ 1)A] |, such that Z|g, = O. Let
AT =L([(n+1)A] +E), and Bt = g.AT. Then we get Kx + 5+ B'|s = g(Ky +
Sy + At)|s = Ks + Diffg(B)* is sle. Pushing forward n(Ky + Sy + A%) ~0 by g
gives n(Ky + S+ BT) ~ 0, in particular, Kx + S + B = 0.

It suffices to show (X, S+ B™) is le. Suppose not, then Ky + S+ B+«a(BT — B)
is also not lc for & < 1 and near 1.

Now {Kx+S+B+a(B"—B)}=—(1—a)(Kx+S+B)—a(Kx+S+B")
which is f-nef and f-big by assumption. We apply the connectedness lemma and
get LCS(X, S + B + a(B* — B)) is connected near f~1(0).

On the other hand, we want to prove LCS(X,S + B + a(B* — B)) = S near
fYo)Nns.

Near the singularities of S, we first note that BT does not appear there by
construction, and (X,S + a(BT — B)) = (X, S) is plt. Indeed, LCS(X,S + B +
a(BT — B)) = S there.

Outside the singular locus of S, we have(S, Diffg(B)) is klt by adjunction and
(S, Diffg(B)*) is Ic, so (S, aDiffs(B)" + (1 — «)(Diffs(B)) is klt. By inversion of
adjunction, (X, S+B+«a(B*—B)) is plt there. We see LCS(X, S+B+a(BT—B)) =
S near f~1(o)N S.

By the connectedness we just proved, we find LCS(X,S+ B+ a(BT™ — B)) =S
near f~'(0), which in turn implies (X, S+ B+a(B*—B)) is plt, a contradiction. [

Remark 4.19. Szabo’s theorems says for a variety X and a divisor D, one can get
a log resolution by repeatedly blowing up smooth centers, and unlike Hironaka’s

result, can leave where X is smooth and D is simple normal crossing unchanged.

Theorem 4.20. [10, 2.1.2 2.1.3]

Let X be a normal surface, and C be a reduced curve. Kx + C' s dlt near P.
Then near P,(X,C) is analytically isomorphic to

a) (C*,{z = 0})/L(1,a), with ged(a,m) =1 if (X,C) is plt. In this case C is
irreducible and smooth.

b) (C% {xy = 0}, if (X, C) is not plt. In this case C' has two smooth components,
and X 1is smooth at P.
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5 Weighted Complete Intersection

Weighted complete intersections provide many examples of del Pezzo surfaces
and surfaces of general type with cyclic quotient singularities. The materials in this

section can be found in [8]. In this section, let k be a field.

5.1 Weighted projective space

Definition 5.1. The weighted projective space P = P(ay, . .., a,) of weights ay, . .., a,
is Proj k[Xo, ..., X,], where the grading is defined by deg X; = a;,i=0,1,2,... n.

Denote by U; the basic open set { X; # 0} C P. We have U; = Spec{k[X, ..., Xu]x, }o,
where {}o means taking the degree zero part.

Construct the following morphism:

~ . 1
Di : Spec k[yo,...,yi,...,yn,t,g] — Spec k[Xo, ..., Xu]|x

defined by
ylt‘”, if ¢ 7& l

o, ifi=1

Xl'—)

Taking degree 0 part induces the morphism

pi : Spec klyo, .- Yi, - -, Yn] = Spec {k[Xo, ..., Xu]x, }o-
We see p; is a quotient maps from A™ — U;, and moreover we have the following.

Proposition 5.2. P(ay,...,a,) is covered by the affine open set U; = A"/ p,,, with

action Co, - (To, -+, Tiy -+, Tn) = (00, ..., Cai s, . .., (o). In other words, it has
exactly n+1 standard quotient singularities, each being of the type %(al, ey Qi ey Gy

The quotient maps p; can be glued together in the following fashion.
Proposition 5.3. There is a natural map p : A"™\{0} — P

Proof. Plug in y; = 3, we obtain p} : Speck|[Yy, ..., Yaly; = Spec{k[Xo, ..., Xu]x: }o
defined by X; — Y;. Glue all the p} together and we get p : A"\ {0} — P O

Note that they are related by p; = p}|{yv,=1}, and p} can be represented by the
projection {Y; # 0} & {Y; = 1} x (A'\{0}) — {Y; = 1} followed by p;.
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Proposition 5.4. There is a covering q : P* — P.

Proof. Define ¢; : Spec k[yo, ..., Ui, ..., yn] — Spec {k[Xo,..., Xulx;}o, by X; —
yt, it i #£l
L ifi=1

Write A" = Spec k[Yy, ..., Y,], and plug in y; = V;/Y; for [ # i, and t = Y;. We

obtain ¢; : Spec k[%’, e %, e YT’;] — Spec{k[Xo, ..., Xu]x, }o. These morphisms

can be glued together. [

Remark 5.5. We can also define ¢ to be the map between Proj schemes induced by
the graded injection: k[Xo,..., X, — k[Yo,...,Ys], Xi — Y. Note that the ¢

constructed above is different from p.

Definition 5.6. If ged(ag,...,a;-1,ai11,...,a,) = 1 for i = 0,1,...,n. We say

P(ao, ..., a,) is well formed.

Lemma 5.7. p; is étale in codimension 1 for alli if and only if P(aq, . . ., a,) is well

formed.

Proof. We note %(al, ...,ay) group action has no divisor fixed by a non-identity

element if and only if ged(r, ay,...,d; ... a,) =1fori=1,2,... n. O
Furthermore, examining carefully, we see that if ged(a;,,a;, ..., a;,) = d # 1,

then for the action of j,, on the basic open set Uj,, an order d element fixes the
locus {X;, = ... = X, . = 0}, where {ip,i1,...,%5,51,---,Jn-s} = {0,1,...,n}.
Such loci are the only possible places that can be singular, called the singular strata.

Denote by U° the complement of all singular strata in P(ay, . .., a,). We find U°
i = X Xy ... X, # 0} with ged(aiy,...a;) =1, and p :
i< (ANO) = Uy, .

is covered by all Uj,
p_l(Uio ..... i) = Ui,

.....

..........

albeit not canonically. Indeed, p is induced by the inclusion {k[Xo, ... Xu]x, x, . x, }o =
KXo, .. Xulx, xiox,, = {k[Xo. - Xulx, x,,.x, Jo[T, %], where T = [T, X,
provided we fix v;, € Z, Y ;_,v;,a;, = 1. Note that if we choose v differently, 7" will
differ by a multiple of a unit in {k[Xo, ... Xy]x, x; .x,, }o. Wesee p~'(U%) — U is

a G,,-torsor, for G,, = Spec ku, %] acts naturally by T +— uT.

Lemma 5.8. Any P(ag, ..., ay) is isomorphic to some well formed P(aj, ..., al).

»'n
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Proof. We only need the following observation P(ag, a; . .., a,) = P(ag, qaq, - . ., qa,)

for any ¢ € N, (¢, a0) = 1. [

5.2 Weighted complete intersection

A degree d form fy in k[Xo,..., X, ] is fo = > CoX® with > jaa; = d. A
general form f; may be assumed such that all C, # 0. In a weighted projective space
P = P(aq, ..., a,), we may define a subvariety X by homogeneous ideal generated

by such forms. We note that the above constructed p; can be restricted to X.

Definition 5.9.

If X C P(ag,-..,a,) a subvariety, such that p~'(X) € A"™\{0} is smooth, call
X quasi-smooth.

If X is defined by ¢ = codim X forms in k[Xo, ..., X,], call X a weighted com-
plete intersection. Denoted by X, 4,.. a.if the defining forms fi, ..., f. are of degrees
dyi,ds, ..., d.. In particular, when ¢ = 1, X, is called a weighted hypersurface. We
set klxg, ...,z = k[ Xo, ..., Xu]/(f1, -, fe)-

Suppose X is a weighted complete intersection of codimension ¢, X is called well
formed if P(ay, ..., a,) is well formed, and X contains no codimension ¢+ 1 singular

stratum.

Proposition 5.10. If X is well formed, then pz-|pf1(XmUi) is €tale in codimension 1

Proof. This follows from that on each affine open set U;, the action of p,, is free in

codimension 1. O

From this we see if X is well formed and quasi-smooth, it has only cyclic quotient

singularities. In this case, we have the following formula for the canonical divisor.

Proposition 5.11. If X = Xy, 4,4, 5 well formed and quasi-smooth, then Kx =

O(a), where a =% 5_, d;j — > a; is called the amplitude.

j=1

This proposition is proved by calculating the Fxt definition of the dualizing sheaf

in [7]. Here we provide a proof dealing directly with differential forms.
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Proof. Let VO = UNX, covered by Vi, . ;. = Ui, ;, NX with ged(ay,, ..., a;,) = 1.
By assumption, codim X\V? > 1. Thus it suffices to consider K. We see as before
that p~1(V;, is induced by k[Vi, .| — k[Vi,
differ by a multiple of k[V;,

i) For a line bundle L over V° and p*L is trivial in p~!(V). Then L = O(m)

.......... ir i) [T 7], where T may

). We proceed as follows.

for some m € Z. Indeed, suppose L is defined by the transition functions g, over

the open cover {V,}, a refinement of {V;, ;. }. We may write g,, = h,/h, for

1 . * . . . . . 7 —m
hy, € (E[V,][T,, E])X since p*L is trivial. Now that h, is a monomial h,T,;™, where
m is common for all p. In this case L = O(m).
ii) We have the following nowhere vanishing regular differential (n — ¢ + 1)-form

on p~}(V), which is smooth.

0 ... n—c n—c+1 ... n \dX; ANdX;, N...NdX;,_,
Wy = Sgn ] ) ) . 8(f1,..,fc)
o - lnc J1 e Je Xy, X0
On each V), denote by zi,..., z,—. the regular system of parameters. We may

write wo = h, T %dzy Ndzp A ... Adzpc N % with h, € k[V,]*, and Ky is defined
by the cocycle g,,, = h,T,*/h, T, € k[V,, N V,]*. Therefore Kx = Ox(a). O

Consider a weighted hypersurface X,. Note that all degree d forms form a linear
system L(d) in A"™! and by Bertini theorem, for general f;, singularities of p~*(X})
only lie in the base locus of L(d). Since L(d) is spanned by monomials, the base locus
B is a union of coordinate k-planes E;;, ; , ={X;, = X;, = ... =X, _, = 0}.

We then require the gradient V f; is nowhere vanishing on these k-planes except at

origin. Write this condition explicitly, we have the following.

Proposition 5.12. Let X; C P(ag, a1, as,as) be a general degree d hypersurface.

It is well formed if and only if ged(ao, . . ., G;, . . . yas) = 1 for alli, and ged(a;, a;)|d
for alli # j

Suppose d > ag,...,az. Then X is quasi-smooth if and only if the following
conditions are satisfied.

i) For all i, there exists j such that there is a monomial X" X, in L(d).

it) For all i # j, there is a monomial X" X" in L(d), or there are monomials
XXXy and X X0 X, in L(d), where {3, j, k, 1} = {0,1,2,3}.

iii) For all i, there exists a monomial not involving X; in L(d).
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Proof. We keep the notation {1, j, k, 1} = {0, 1,2, 3}.

i) The existence of X" is equivalent to Ej; € B. If not, then the existence of
X" X; with j # 4 is equivalent to that 0; fs|g,,, is nowhere vanishing.

ii) The existence of XimiX;nj is equivalent to Ej; ¢ B. If not, then the existence
of XZ.miX;.ank and XimgX;n;Xl is equivalent to that (O f4, 0ifa)|E,, does not vanish
unless X; = X; = 0. which is exclude by 1i).

iii) The existence of monomial not involving X; is equivalent to E; ¢ B. O

In [1] weighted hypersurfaces that are del Pezzo are classified. As an illustration,
we show general weighted hypersurfaces in the Table 1. has n-complement.

For convenience, we denote the variables P(agay, as, az) = Proj Clw, z,y, z]. De-
note Uy = {w # 0}, po : Vo = {w = 1} C (A""\0) — Uy , and similarly for z,y, 2.
We also adopt the coefficient convention: e.g., a general equation F = 33 + 22z

means F = c,y° + cpx®z for general ¢y, cy.

Example 5.13. Let X = X5, ¢ CP(1,3n —2,4n — 3,6n — 5), « = —n. It has a

3-complement.

Proof. The general equation for X is F' = y? 4+ 222 + wz? + higher terms of w. Pick
a section w?z of Ox(—3Ky), and let D be this divisor. We show that (X, £D) is lc.

Recall wellformedness of X implies the covering map p; is finite étale in codi-
mension 1 for all . By Lemma 2.23, it suffices to prove the preimage (Xi, %f)z) of
(X, 3D)|y, is lc for all i. Also, by quasi-smoothness of X, X, is smooth.

Near a smooth point P of the reduced part of D;, (X'Z-, %[?2) is analytically iso-
morphic to (A2, cL), where L is an axis, ¢ = % or % It is lc here.

The only singular point is P = (0,0,0,1) of Dj in Vi, where the tangent plane
TpX is {w = 0}. We project (X, %D;;) to TpX. Since the projection is étale near
P. Tt suffices to prove that (A2, £(2Cy + Cy)) is le. where Cy = {y® + 2% = 0} =
X Nn{w = 0}, Cy = {& = 0}. This can be shown by standard blowup resolution
calculation.

Let f : X — X be the minimal log resolution of (A% C; 4+ Cy), which can be
obtained by repeatedly blowing up singular points. Denote by C4,Cy the proper

transforms of C, Cy respectively, and E; be the exceptional divisors for j = 1,2, 3.
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Then
KX = f*KX +E1 +2E2 —|—4E3,
f*Cl == él -+ 2E1 + 3E2 —+ 6E3,
fCy = Co+ Ei +2E; + 3Es.
We find that lct(2C; + Co) = min{2,3, 2} = . Therefore, (A% (201 + Cy)) is

le. O]

Example 5.14. Let X = Xjo,-51 C P(7,28n — 18,42n — 27,63n — 44), a =
—(7n —1). It has a 4-complement.

Proof. The general equation is F' = y3 + yx® + wz® + higher terms of w. Pick a
section w?z of Ox(—4Kx), and let D be this divisor. We show that (X, ;D) is lc.

The only singular point is P = (0,0, 0,1) of D5 in V3. We project to TpX = {w =
0}. Then similar to previous example, it is reduced to (A%, 1(2C) + C5)) is lc, where
Cy = {y® + y2® = 0} and Cy = {z = 0}. This is also shown by similar calculation.
For convenience, denote C; = C5 + C, with C3 = {y = 0} and C,; = {y* + 2* = 0}.

Let f: X — X be the minimal log resolution of (A2, Cy + Cs 4+ Cy). Denote by
Cy, Cs, Cy the proper transforms of Cs, Cs, Cy respectively, and E; be the exceptional

divisors for j = 1,2,3. Then

K; = f*Kx+ E)+2FE,+4Es;
f*Cy = Co+ Ey + 2E, + 3F;;
f*Cy = Cs+ Ey+ Ey+ 2Fs;
f*Cy = Cy+2E, +3Ey + 6E;.

We find that lct(Co +2C5 +2Cy) = min{2, &, &} > 1. Therefore, (A2, 1(2C, +C3))
is lc. [

Example 5.15. Let X = Xo4,12 CP(2,6n —3,8n —4,12n — 7), « = —2n. It has

a 4-complement.

Proof. The general equation is F' = x* 4y 4+wz?+higher terms of w. Pick a section
w?y of Ox(—4Kx), and let D be this divisor. We show that (X, $D) is lc.

The only singular point is P = (0,0,0,1) of Ds in Vs. We project to TpX =
{w = 0}. Then it is reduced to (A?, 1(2C, + (5)) is lc, where Cy = {y* + 2* = 0}
and Cy = {y = 0}. We calculate as follows.
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Let f: X — X be the minimal log resolution of (A% Oy + Cy). Denote by oYy
the proper transforms of (', Cy respectively, and E; be the exceptional divisors for

j=1,2,3,4. Then

Ky = f*Kx+ E1+2Ey+ 4F3 + 6Ey;
f*Cy = Cy+3E; +4E, +8E; + 12E,;
f*Cy = Co+ By + 2E, + 3E5 + 4E,.

We find that 1ct(2C) 4+ Co) = min{2, 2, = =} = 1. Therefore, (A%, 1(2C, 4 Cy)) is

77107 197 28
lc. O
Example 5.16. Let X = Xg,.4 CP(2,2n+1,2n+ 1,4n + 1), « = —1. It has a

2-complement.

Proof. The general equation is F' = fy(x,y) + wz? + higher terms of w, where f; is
a homogeneous polynomial of degree 4. Pick a section w of Ox(—2Kx), and let D
be this divisor. We show that (X,1D) is lc.

The only singular point is P = (0,0,0,1) of Ds in Vs. We project to TpX =
{w = 0}. Then it is reduced to (A2, (L1 + Ly + L3 + L)) is lc, where L; is a line
through the origin for + = 1,2, 3,4. For general F', L; are distinct. We calculate as
follows.

Let f: X — X be the minimal log resolution of (A2, Ly + Ly + L3+ L4). Denote
by L; the proper transform of L; for i = 1,2, 3,4, and E be the exceptional divisor.

Ky = f*Kx+FE,
L, = Li+E.
We find that lct(Ly 4+ Lo+ Ls+ Ly) = 2 = 1. Therefore, (A%, $(Li+ Lo+ L3+ Ly))
is lc. O

The followings are some examples from Table 2 of [1]. These examples are not

n-complementary for n < 6 since | — nKx| = 0.
Example 5.17. Let X = X5 C P(13,35,81,128), « = —1. It has a 13-complement.

Proof. The general equation is F' = 2% + 2%y + wy® + higher terms of w. Pick a

section w of Ox(—13Kx), and let D be this divisor. We show that (X, 5D) is lc.

The only singular point is P = (0,0,1,0) of D, in Vi. We project to TpX =

{w = 0}. Then it is reduced to (A?, 5C) is lc, where C' = {z* + 2° = 0}.
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Let f : X — X be the minimal log resolution of (A%, Cy + Cy). Denote by C' the

proper transform of C', and FE; be the exceptional divisors for j = 1,2,3,4. Then

KX = f*KX—|—E1+2E2+3E3+6E4;
f*C = C+2F, +4F, +5E; + 10E,.

We find that let(C) = min{3, 3,25} = 5. Therefore, (A% £C) and hence

710

(A2, L0O) is le. O]

713

Example 5.18. Let X = X7s C P(11,13,21,38), a = —7. It has a 11-complement.

Proof. The general equation is F = 22 + xy® + wa® + higher terms of w. Pick a
section w” of Ox(—11Kx), and let D be this divisor. We show that (X, £ D) is lc.

The only singular point is P = (0,1,0,0) of Dy in V4. We project to TpX =
{w = 0}. Then it is reduced to (A%, LC) is lc, where C' = {2* + y> = 0}. It is

711

well-known that let(Cy) = 2 > £ We have (A%, £C) is indeed lc. O
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Remark 5.19. The weighted complete intersection Xg6 C P(2,2, 3, 3, 3) is an example

of well formed quasi-smooth del Pezzo surface.

6 Kahler-Einstein Metric

In Riemannian geometry, it has been a fundamental problem to find nice metrics
on a manifold. In Kéhler geometry, similarly, it has been an active research prob-
lem to determine the existence of Kéahler-Einstein metrics. We recall the following

definitions.

Definition 6.1.

i) Let (X, h) be a Hermitian complex manifold, Define g = Reh and w = -Im h.
If w is a closed form, then call w a Kahler form, g a Kahler metric, and X a Kéhler
manifold.

ii) Let (X, g) be a Riemannian manifold. If R = kg, where R is the Ricci tensor,
and k € R a constant then call g an Einstein metric, and X an Einstein manifold.

iii) When (X, h) is a Hermitian complex manifold such that g is both Kéhler

metric and an Einstein metric, g is called a Kéhler-Einstein metric.
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The problem has been solved for X with ¢;(X) < 0 (resp. = 0). In this case, X
always has a Kéahler-Einstein metric, which is known as Aubin-Yau theorem (resp.
Calabi-Yau theorem). However, for ¢;(X) > 0, i.e., the Fano case, X does not
always have a Kahler-Einstein metric. Thus, it remains an interesting question. For

smooth surfaces, Tian solved this problem completely.

Theorem 6.2. [2/] A smooth del Pezzo surface X has a Kdhler-Einstein metric if

and only if X is not P? blown up 1 or 2 points.

Consequently, Matsushima’s necessary condition for existence of Kéhler-Einstein
metric, i.e., the Lie algebra of Aut(X) is reductive, is also sufficient for surfaces. In
the proof of the theorem a-invariant and its refinements are defined. Here we give

the definition of a-invariant for example.

Definition 6.3. For an n-dimensional smooth projective manifold X with ample

line bundle L define

a(X,L) = sup{a>0]|3C > 0 such that

/ emelemspx @)y < O Vo € C(X,R),w +iddp > 0}
b
In particular, if X is Fano, we define a(X) = a(X, —Kx).

There is an algebraic formula for a(X, L) involving log canonical threshold due

to Demailly.(cf. [21, Appendix])
Theorem 6.4. a(X, L) = inf,eninfpejmr let(X, %D)

With a-invariants, there is a sufficient condition for existence of Kahler-Einstein

metrics.

Theorem 6.5. [20, Theorem 2.1.] If a(X) > 25, then X has a Kdihler-Einstein
metric.(cf. [21, 3.2])

For orbifolds, there is a similar result.

Theorem 6.6. [/ A Fano orbifold X of dimension n has a Kdhler-FEinstein metric
if

1
a(X)=inf _inf lct(X,~D)> nil

n DE'-me‘

36



It is not easy to compute the global log canonical threshold «(X) !, for it involves

all divisors Q-equivalent to —Kx.

Example 6.7. a(P?) = 3, o(P' x P') = ;. We note that if X is smooth at P,

but (X, D) is not lc at P then multpD > 1. However, P? and P* x P! do have
Kéhler-Einstein metric, namely, the Fubini-Study metric.

In [2], Cheltsov proved that for a smooth degree d hypersurface X in P, and
B = rH, where H is the hyperplane section. Then there is a lower bound for log

canonical threshold:
—1 1}
rd " r

In particular, if X is a cubic surface in P?, we have a(X) > 2.

let(X, B) > min{n

7 FEuler Characteristics

7.1 Singular Riemann-Roch Theorem

The Riemann-Roch formula plays the pivotal role in the study of geometry of
nonsingular varieties. It is desirable to have a similar formula at least for mildly
singular surface. For surfaces with only quotient singularities, there is a singular
Riemann-Roch formula due to Reid (cf. [18]). To state the formula, we need to

introduce Dedekind sums first.
Definition 7.1 (Dedekind Sum). For a quotient singularity %(a, b), define

oM ¢
o=0G@d) = > TmaTo

¢epr\{1}

Theorem 7.2 (Singular Riemann-Roch Theorem). [/8/
Let X be a surface with only cyclic quotient singularities, and D be a Weil divisor.

Then
1
X(Xa D) = X(X> OX) + §D<D - KX) + Z CP<D)
Pex
where cp(D) = %(O’j — 09) for quotient singularity P of type %(a,b) and j is the

weight of cyclic group action on the sheaf Ox (D).

'Many papers including [3] use the notation “lct(X)”. However, it seems to cause confusion

here, so we use “«(X)” instead.
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In particular,

m(m +1
X(Xa —me) - X(Xv OX) + %Ki + Z CP(_mKX)
Pex
where c,(—mKx) = (0 _m(ats) — 00).
We set 7, := (0(m+1); — Omj)/7 and by, 1= Tyt — Ty We have 7, = —7_,,, (see

below). For simplicity, we denote
7 = X(X, —mKx),

and the difference and the second difference are given by

Asty = Hpy1 — #p
= (m+ DK%+ pex Tmt1
A% = Asgpiq — Ay,

= K%+ ZPEX Omt1-
Given a quotient singularity 1(a,b), we let a (resp. @) be the smallest positive

integer such that aoc = b (mod r) (resp. (bav = a(mod r)).

Lemma 7.3. Keep the notation as above.
i) Tm = —T—m, and 8y = 6_(m+1)-
it) T = (1 + R™) — meEE2 where

__{L (1+a)J N Lm(1+a)—1J N Lm(1+a)J N Lm(1+a)—1J}.

r

W) O = L — %‘”2, where

Zm(%(a,b)) = #{0<j<al|ja=-m(a+0b)(modr)}+
#{1<j<a+1|jb=-—m(a+b)(modr)}
= #{0<j<alja=(m+1)(a+b)(modr)}+

#1<j<a+1]|jb=(m+1)(a+0b)(modr)}.
Zm € {0,1,2}. Moreover, R""' — R™ = Z,,.1, R" € Z.

Proof. 1) By definition we have

a+b 1

T = Y e
_ ¢t —1  —m(atb)
- Zg (1—-¢=9)(1-¢~Y) C

_ 1—¢atd) —m(a+b) _
= Yemenm ¢ = e

Cm(a+b)
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ii) Denote @', b’ the least positive integer such that aa’ = bb' = 1(mod r). Then

a+b_1

M = T ca)(l [(=D=D)

o _1 Cm(a+b) 1+Ca Cm(a+b) 1+<b
= ZC{ — (‘1 )_|_ — g(‘b )}

. 1 Cm(a+b)a, 1+< Cm(a+b)b/(1+<)
- T{ZC 1—¢ +ZC 1-C }

= (1—r)—mla+b)(ad +V)—1-7R.,
where R/ = 2{{ m(“+b J + {_m(a+b)a’+1J I L_m(a:—b)b’J n {_m(a—&-b)l/—i—lJ}'

Cm(a+b)

We may assume a = a’ = l,and b = o, ' = &. Let bb' = rk + 1. Then
T =—1 —m2+b+V +kr)—rR,
R = 1{{ 1+b)J n L_ m(1+b)+1J i L_ m(1+b)b’J n {_ m1+b)b’+1J}

- 2{{ 1+b)J n L_MJ X L_MJ X {_W(H—b’)ﬂj} —mk.

T

So we may rewrite r7,,, = —m(2+b+0) —r(1 + R,,), where

:_{{ MJ%_WMM)HJ%_MJ%_MJ},

r r r

Also note 7,,, = —7_,,, we find R, + R_,, = —2. Write

o __{{ (1+b)J+{m(l%—b)—lJ+Lm(1+b’)J+{m(1+b’)—1J}j

r r r

and 17, = —m(2+ b+ V) +r(1+ R").
i) 10, = 3. <<Zjb_;1> (ez:g) cmath)
= (AT LA e
= S (L4 TN (L4 O (P (@I latt)
+ DA+ e .+ ((@=Dayemlat+b)+a

+ (1 + Cb + C% 4+ C a” —l)b)Cm (a+b)+b + ZC C(m—&-l)(a-&-b)
Now (14 ¢4 ¢, 4 ¢leDay1 4¢P+ ¢, 4 ¢labby =1,

0 ,ifs fr

Also note » . ¢* =72z — 1, where z =
1 Lif slr
S0 1m =), F(O¢™a+Y) | wwhere

flx) =1+ (@ + 2%+ ... +2°) + (2 + 2% + ... +2%) + 2°T°

We have r0,, = rZ,, — (& + @ + 2). The latter formula is obtained from Z,, =
Z_(m+1)- O

Remark 7.4. From 7, = —7_,,, we see directly x(X,mKx) = x(X, (1 — m)Kx) for

all m. This can be also derived from Serre duality as in [11, 5.27], which states for an

39



klt log pair (X, A), and D any Q-Cartier Weil divisor, X is CM and HY(X, Ox (D))
is dual to H" (X, wx(—D)) for all 4.

For m = 0, we have

1, if P is not a canonical singularity;

Zo(P) =

2, if P is a canonical singularity.

. From this we see canonical singularities do not affect Euler characteristics, and
can be considered negligible afterward. Since 79 = 0, sp—2_1 = Ax_1 =0, dy = 71,

we have

Doy = K2+ 3 6(P) = K2 + 3 %(1—04—@—2).

pex P is not canoncial
7.2 Euler characteristics under L-blowups

Given a surface X with cyclic quotient singularities, we let Y — X be its L-
blowup. The purpose of this subsection is to compare Euler characteristics of these

two surfaces.

Theorem 7.5. Suppose f : Y — X is birational, both have only rational singularities

. Then xo(Y )=xo(X).

Proof. Take a resolution g : Z — Y, denote h = fog, then Rig,0, = 0, R°h,O; =0
forall i >0

By Larey spectral sequence, R? f,R19,0,; = R"h,O, from this we see R' f.Oy =
0, for all i > 0 [

Under general birational morphisms, s; may be changed. We prove that s is

preserved by L-blowups.

Theorem 7.6 (= Proposition 1.2). If f : Y — X is an L-blowup, then x(Y, —Ky) =
X(X7 _KX)

Proof. By induction, it suffices to prove this for a simple L-blowup. We thus assume
that X has singularity P of type %(1, b) and 7 : Y — X is a simple L-blowup so
that Y has two singularities ()1 and Q)5 of types ﬁ(l, 1) and ﬁ(l, ¢) respectively,

where ¢ = ab —r.
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The following calculation uses the identities of Hirzebruch-Jung continued frac-

tions, as in Remark 2.41:

Denote
= (Up,...,u1), a = Uy,
b:<un—17"'7u1>7 C:<un—27"'au1>7
b= (Up,... ug), k= (up_1,...,us) <b,
k1= (Up_2,...,u2) <c.
Then we have
c=ab—r, bb =1+ rk,

E:ak—kl, Ck'zl—l-bkl,
Let ¢ is the least positive integer such that ¢¢ = 1 (mod b+ ¢). Then by
b+c= (up1+1,a,9,...,u1), (k1 + k)e = 1+ k1 (b+¢). We find ¢ = ky + k.

Combining these, we obtain
bo+be—c'r = (1+71k)+(ak—ki)c—r(k+k) = 1—rk; —cki+a(1+bk;) = 1+a. ()
By singular Riemann-Roch:
1 1
_ 2 /
Asg(Y) = Ky + 60<a—+1<1’ 1) + 50(@(170)) + ) 6P
P'#£Q1,Q2
1
Moo(X) = KE 40 (L0) + 3 6P
PP
From this we see

(V)= (X)) = Asxp(Y) — Asgp(X)

b+b+2 c+d+2 4

= K2 -K?+1 — .
Y x b b+c a+1
By Proposition 2.36,
+14+b+c
K2~ K% = — r ¢ —1)?
Y X (a—l—l)(b—l—c)( r )

and it is reduced to prove
(a+1+b+c—1)* = (a+1)[(b+c)r+(b+c)(b+b+2)—r(c+d +2)]—4(b+c)r. (1)
Using () and b+ c+r = ab+ b,
LHSof (1) = (a+1)*+ (b+c+r)?+2a+1)(b+c—7r)—4(b+c)r
= (a+ 12+ (b+ctr)ba+b) +2a+1)(b+c—71)—4(b+c)r
= (a+1)(a+1+bc+br+0b*+2b+2c—2r)—4(b+c)r

= RHS of (1)
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Theorem 7.7. Suppose X has a %(l,b) point, and we blow up X along %(s,t) to
get Y. If
m s+t m+1
< <
m+1 r m

Y

then s, x = sy fori=1,2,...,m. In particular, if s+t =1, then s x = 2y

for all i.

Proof. By Proposition 2.36 Ky = m*Kx + (5 — 1)E.

We claim that (Y, ¢E) is klt for 0 < ¢ < 1. By construction, it suffices to consider
the toric singularity without loss of generality.

Let Z be the toric variety defined by a lattice N = Ze, +Zey+7Z- %(17 b), the cone
o be the first quadrant, and E be the divisor corresponding to the x-axis. Recall
the minimal resolution f : W — Z is obtained from blowing up along all vertices
of the Newton polytope P = convex hull of N N o. We denote those vertices by
(0,1) = By = (ag,bo), P = (ay1,b1),..., P, = (ag,bx), (1,0) = Pir1 = (a1, brs1),
with0<a; <...<ap,<l,and 1 >b; >...> b, > 0. Then

k

i=1

f*E=FE+ zk: a E;
i=1
where F; is the exceptional divisor corresponding to P;. Since 0 < a;+b;—1—ca; < 1,
(Z,cE) is klt.

If s+t <r, write —=-mKy = Ky — (m+ 1)Ky =f Ky + ((m+1)(1 - ZHE |
then by Kawamata-Viehweg vanishing theorem, we have R'f,Oy(—mKy) = 0 for
i > 0if (m+1)(1 — =) < 1. In this case, f,Oy(—mKy) = Ox(—mKx) We find
XY, —mKy) = x(X, —mKx).

If s+t >r, write(m + 1)Ky = Ky + mKy =; Ky + m(3* — 1)E) , then by
Kawamata-Viehweg vanishing theorem, we have R'f,Oy((m + 1)Ky ) =0 for i > 0
if m(#* — 1) < 1. In this case, f.Oy((m + 1)Ky) = Ox((m + 1)Kx) We find
XY, (m+ 1)Ky) = x(X,(m+ 1)Kx), and hence x(Y,—mKy) = x(X, —mKx) by
Serre duality. [
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In the proof we used the following lemma. It is not a difficult result, but we do

not know a proper reference. We include the proof for completeness.

Lemma 7.8. Let f :' Y — X be a birational morphism between normal varieties.
Suppose Kx is Q-Cartier, we write Ky ~qg f*Kx + E, where E =) ag,FE; is a
Q-divisor. Suppose E > 0 (resp. —E > 0). Then f.Oy(mKy) = Ox(mKx), for

m >0 (resp. m<0)

Proof. We may assume X is affine. We note that since X,Y are normal, there is
U C X such that X\U has codimension at least two, and f|;-1(y is an isomor-
phism. There is an natural inclusion H°(Y, Oy (mKy)) — H°(U,Oy(mKy)) =
H°(X,0x(mKx)) as subspaces of the space of rational sections of wf/"g, where & is
the common function field of X and Y.

To prove equality, take a regular section w € H°(X, Ox(mKy)), and prove it in
H°(Y,Oy(mKy)). We focus on an exceptional prime divisor E, at a time. Now we
may assume Y is affine, and Fy corresponds to a height 1 prime p. We pick wqy as in
the prove of Hurwitz formula. Then w is regular at Ej if and only if ord,(w/wy) > 0.

Suppose r € N such that rKy is Cartier, and rKy ~ f*rKx +rE. We see
w® € H°(X,0x(rmKx)) and thus ord,(w®" /wi") > mrag,, ie., ord,(w/wy) >
mag,. From this we conclude that if ag, > 0 (resp. ag, < 0), then w is regular at

Eq if m >0 (resp. m < 0), and hence the proof. ]

8 Nonvanishing

Now let X be a surface with only quotient singularities {%(1, 1)}. It is clear that
(
1, ifm=0,5,5—1,—1(mod r)

Zn(z(1,1) =42, ifm= =L (modr)

0, otherwise

\
Let ¢, be the number of singularities of type %(1, 1). From the singular Riemann-

Roch theorem, we calculate the difference and second differences of s:

4
Asgy = K% +Zcr(1 — ;)

Nty = K3+ Y 6 (Zr (H(1,1)) = )

r r
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Written explicitly,

4
A%y = K242 —§ -
) X+ Cc3 + ¢y g C ,

4
A%y = K)2(+03+c4+2c5+06—20r—

r
T

4
A%y = K2 4ces+cp+eg+20+cs— > ¢
2 X 3 4 6 7 8 2 r

4
A2%3 = K§+203+C4+C5+68+2C9+610 —Zcr; (*)
and so on. Combining the above formulae, we find

— 2300 + 301 + 39 + 305 — 204 = 2035 — A3y — N30y = g + QZCT >0. (k%)
r>9

Therefore, we have the following:

Theorem 8.1. If X is a surface with only %(1, 1) points, then
—2%0—|—%1+%2+%3—%4 20
Now we are able to prove the Main Theorem.

Proof of the Main Theorem. Suppose that X is a del Pezzo surface. Then 3¢ = 1
and s, = h’(—mKyx) > 0 for m > 0 by Kawamata-Viehweg vanishing theorem.

We also have s < 3¢4. By 8.1, 53¢y + 305 + 305 — 324 > 2, and we get 301 + 203 > 2. [

Example 8.2. Examples of such X include the weighted projective space P(1, 1, a),
weighted complete intersections X5 C P(3,3,5,5) and Xg6 C P(2,2,3,3,3). In the
latter cases h°(X, —Kx) =0, but h%(X, —-3Kx) > 0.

Using the same formulae, we see that del Pezzo with only %(1, 1) points have the

following property.

Theorem 8.3. If X is a del Pezzo surface with only 1(1, 1) points, then h®(—mKx) >

2, for some m < 5.

Proof. By s + 23 > 2, we have h°(—3Kx) = 53 > 2 if h°(—Kx) = 0. We thus
assume that h°(—Kx) > 0. Hence we have s, > 0 for all n. Suppose the contrary

2:%1+%2+%3—%4:2—|—08+220r.
r>9
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So ¢, = 0 for all r > 8. Now since A?s¢y = A?3e; = A?300 = A?305 = 0. By (¥), w

have c5 = ¢; = 0, and ¢35 = ¢5. But then
0=Asx=K3 >0,
a contradiction. O
We have the following generalization.

Theorem 8.4. Suppose X is a surface with only singularities of types %(1, 1) and
521(1,=2). Then

%2+%4+%621+%3+%7.

If moreover X is a del Pezzo surface, then h°(X, —mKx) > 0 for some m = 2,4

or 6.

Proof. For odd number r = 2s + 1,

1 1, iftm=0,2,4,...,r — 1(modr)
Zn(=(1,r —2)) =
r

2, ifm=1,3,5,...,r —2(modr)

Let ¢, be the number of singularities of type %(1, 1), and dg be the number of

singularities of type 1,—2). From the singular Riemann-Roch theorem, we

1
el

calculate the difference and second differences of s«:

4 3s+1
Az = K2 (1 — — dg(1 —
0= K+ Ser(l= 1)+ a1 - 5o
1 3s +1
A5y = KX +) cT(ZmH( (1,1)) — - +§ 25+1<1 2))_23+1>
Denote A = K% — > ¢, — >, ;’iﬁd d = 2323 ds, we find in particular,

Nty = A+ cotdy+d

A%y = A+ 2c3+ ¢y + 2dy + 2d

A%y = A+23+c4+cs+cg+29+c1o+do+d
A%y = A4cs+cy—+es+cg—+ e+ 20 + crg + dy + 2d
A%x5 = A+cg+ci+co+cr+cio+ 203+ ca+2do + d

which yields

2035 + A? sy — (A%se5 + Asey + A%305) = 7 + cg + 14 + 2 Z ¢ >0

r>15
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Hence,

Hy + g + 6 > 1+ 203+ 207

The last assertion follows by s, = h°(X, —mKx) > 0 for m > 0. ]

In general, we want to construct similar inequalities for A?s¢ of the form
D XA, >0,
i

where Y, A; = 0 This is equivalent to >, \; Z,,,(£(1,b) > 0. However, we find for a
1(1,b) point,

1 if rim(1+0)

1
I

r

(1,0)) =41, if r|(m + 1)(1 +b)

\ 1{(m+1)(17+b)}<17+b + 1{(m+1)(17+5)}<17+5, otherwise.

By using Hirzebruch-Jung continued fractions we find the set {(2, %) |0 <b<
r,(r,b) = 1} and hence {(%,#) | 0 < b < 7 (r,b) = 1} is dense in [0, 1] x

[0,1]. Indeed, given a rational point (z,y) € (0,1) x (0,1), we represent them by

Hirzebruch-Jung continued fractions as

I R S IR
(Ug, .+« up) (U0, +y Unr)
Consider ry = (Ug, -« ., Up, M, Vs, .o 00), bar = (Ugy -« oy Upyy MU, ..., v1), and
by = (U1, Uy, MU, .. . ug). We have (%,%) — (z,y) as M — oc.

Since for 0 < x < 1, with mx ¢ Z, {mz} < x if and only if

2 )U...U(m_2 m—2)U(m—1’1)

1 2
m' m—1 m ‘'m-—1 m

1
m' m—1

)U(

z € (

This means for any finite sequence z,, of 0,1,2 with zy = 1, there are infinitely
many pairs (r, b) such that Z,,(1(1,b)) = 2. It seems to prevent us from construct-

ing similar inequalities.
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