Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53882
Title: 物理即時模擬下的人體肢體平衡
Real-Time Physics-Based Human Legs Balancing Simulation
Authors: Po-Han Lin
林柏翰
Advisor: 歐陽明
Keyword: 動作合成,增強式學習,下半身平衡,
motion synthesis,reinforce learning,lower body balance,
Publication Year : 2015
Degree: 碩士
Abstract: 本論文提出了一個嶄新的動作合成問題,根據上半身的動作軌跡產生出對應的下半身運動軌跡,並且讓這個動作在物理模擬引擎運算的時候可以令整個身體維持平衡,而為了解決這個問題,我們利用增強式學習,讓電腦能夠在不斷的進行嘗試之後找到一個最好的策略來應付不同的上半身運動軌跡。當一個上半身的運動軌跡進入到我們系統,首先會對這個只有上半身的動作進行一次簡單的物理模擬,藉此從中擷取出這個動作的一些特徵,再輸入事前已經訓練好的類神經網路模型,而這個網路模型所得到的響應就會是我們下半身相對應動作的特徵,之後再經過一個轉換演算法將下半身動作的特徵轉換成動作軌跡,將這個動作軌跡與原本的上半身動作軌跡結合起來同時驅動的話,就是我們最後所得到的動畫。利用增強式學習讓電腦自行學習出平衡的策略方法,可以讓我們不需要過度的花費時間在尋找及調整以往利用最佳化方法時所需的目標函數以及限制函數,並且這種方法也比較符合人類在初學一個新的動作時大腦及身體在運作的方式。
In this thesis we propose a new motion synthesis problem. For an upper body movement as input, system generates a corresponding lower body movement. When they animate at the same time in a physical simulation software, the human model should maintain body balance. To solve this problem, we try to use reinforce learning to let computer find the best control policy during iteratively testing and improving to adjust different upper body movement. When set an upper body movement as system input, first we execute a physical simulation for the upper-body-only movement to extract features of the movement. Then we pass these to a learned neural network model. The responses of the model is the features of corresponding lower body movement. We use a decoding algorithm to transfer output features to the lower body movement trajectory. In the last, we animate upper and lower body movement at the same time, it will be the final animation. This method makes us not to cost too much time in searching or revising objective and constraint function in traditional optimization methods. Also, the method is much like a human start to learn a new movement or skill.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53882
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
793.1 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved